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SUMMARY 

This  report desc r ibes  t he  formulation and development of a computer 
a n a l y s i s  f o r  t h e  c a l c u l a t i o n  of s t reaml ines  and pressure  d i s t r i b u t i o n s  around 
two-dimensional (p lanar  and axisymmetric) i s o l a t e d  n a c e l l e s  a t  t ransonic  
speeds. The computerized flow f i e l d  a n a l y s i s  i s  designed t o  p red ic t  t h e  
transonic flow around long and s h o r t  high-bypass-ratio f an  duc t  n a c e l l e s  w i t h  
i n l e t  flows and wi th  exhaust flows having appropr ia te  aerothermodynamic pro- 
p e r t i e s .  The flow f i e l d  boundaries are located as f a r  upstream and down- 
stream as necessary t o  o b t a i n  m i n i m u m  d is turbances  a t  t h e  boundary. The far- 
f i e l d  l a te ra l  flow f i e l d  boundary i s  a n a l y t i c a l l y  defined to  exac t ly  represent  
f r ee - f l i gh t  cond i t ions  or solid wind tunnel wall effects. 

The i n v i s c i d  s o l u t i o n  technique is based on a Streamtube Curvature 
Analysis. The computer program u t i l i z e s  an automatic g r id  refinement proce- 
dure and so lves  t h e  flow f i e l d  equations with a matr ix  r e l axa t ion  technique. 
The boundary l a y e r  displacement e f f e c t s  and t h e  onset of t u rbu len t  separa t ion  
are included, based on t h e  compressible tu rbu len t  boundary l a y e r  s o l u t i o n  
method of S t r a t f o r d  and Beavers and on t h e  tu rbu len t  s epa ra t ion  p red ic t ion  
method of S t r a t f o r d .  

Th i s  computer program has t h e  c a p a b i l i t y  of c a l c u l a t i n g  t h e  pressure  dis-  
t r i b u t i o n s  and flow f i e l d s ,  inc luding  viscous displacement effects ,  on a v a r i e t y  
of i n t e r n a l  and e x t e r n a l  shapes. The loca t ion  of i n c i p i e n t  tu rbulen t  boundary 
l aye r  separa t ion  is  i d e n t i f i e d ,  if and when t h e  ca l cu la t ed  pressure g rad ien t s  
are  s u f f i c i e n t  t o  cause it. The computing times are r e l a t i v e l y  sho r t  (2-6 
minutes on a CDC 6600) depending on t h e  complexity of t h e  problem. The pre- 
d i c t e d  pressure d i s t r i b u t i o n s  have been compared wi th  the  through-flow nace l l e  
test  r e s u l t s  f r o m  t h e  NASA-Langley 16-foot tunnel. 

x i  



ANALYTICAL METHOD FOR PREDICTING THE PRESSURE DISTRIBUTION ABOUT A NACELLE 
AT TRANSONIC SPEEDS 

PART I - STREAMTUBE CURVATURE ANALYSIS 
J.S. Kei th ,  D.R. Ferguson, C.L. Merkle, and P.H. Heck 

General Electric,  Aircraf t  Engine Group 
Evendale, Ohio 45215 

1.0 INTRODUCTION 

A i r c r a f t  are being designed with t h e  NASA-developed s u p e r c r i t i c a l  wing 
t o  f l y  a t  c r u i s e  Mach numbers approaching one, The need f o r  low-installed 
drag  and high-drag-divergence Mach number nace l l e  i n s t a l l a t i o n s  is  extremely 
c r i t i c a l  t o  t h e  success of t h i s  design. Design techniques are requi red  t o  
eva lua te  these  nace l l e s  on an i s o l a t e d  basis and then on an  i n s t a l l e d  o r  
i n t eg ra t ed  bas i s .  

For t h i s  reason NASA has begun a program t o  provide des ign  information 
f o r  low-drag, high-drag-divergence Mach number i s o l a t e d  nace l l e s  s u i t a b l e  
f o r  u s e  w i t h  advanced high-bypass-ratio turbofan engines. One element of 
such a program i s  the  development of a method t o  p red ic t  t h e  inv i sc id  pres- 
su re  d i s t r i b u t i o n  and flow f i e l d  about an a r b i t r a r y  axisymmetric ducted body 
a t  t ransonic  speeds. The p red ic t ion  technique w i l l  provide t h e  means t o  
conduct parametric s t u d i e s  so t h a t  t h e  nace l l e  design c r i t e r i a  could be 
evaluated t o  select conf igu ra t ions  f o r  f u r t h e r  experimental i nves t iga t ions .  
The p red ic t ion  technique would provide guidance dur ing  wind tunnel  t e s t i n g  
t o  develop n a c e l l e  shapes which would minimize drag  wi th in  given des ign  
r e s t r a i n t s .  

Severa l  techniques of so lv ing  t h e  inv i sc id  equations of motion about 
a r b i t r a r y  two- or three-dimensional bodies a t  t ransonic  speeds are present ly  
a v a i l a b l e ;  however, there are no computer programs a v a i l a b l e  which treat a i r  
i n l e t  o r  n a c e l l e  conf igura t ions .  The ob jec t ive  of t h e  developnent of t h i s  
computer a n a l y s i s  was t h e  p red ic t ion  of flow f i e l d s  about i s o l a t e d  n a c e l l e s  
a t  t ransonic  conditions.  The s o l u t i o n  technique w a s  f u r t h e r  spec i f i ed  t o  
give accura te  resu l t s  c o n s i s t e n t  wi th  t h e  requirement of r e l a t i v e l y  s h o r t  
computing t i m e  per input  case as  compared t o  t h a t  requi red  f o r  a t i m e -  
dependent f i n i t e  d i f f e r e n c e  method of so lu t ion .  The method u t i l i z e d  t o  com- 
pute t h e  flow f i e l d  i s  t h e  Streamtube Curvature Relaxation technique. 

The Streamtube Curvature Method (STC) of so lv ing  p lanar  and axisym- 
metric e x t e r n a l  flows has not been discussed s i g n i f i c a n t l y  i n  t h e  l i t e r a t u r e ;  
however, t h e  method i s  a very n a t u r a l  one. For example, engineers  f r equen t ly  
r e l y  on one-dimensional compressible flow r e l a t i o n s h i p s  f o r  a f i r s t - o r d e r  
s o l u t i o n  t o  ducted flows. The STC approach i s  similar except t h a t  a number 
of conf luent  streamtubes, w i t h  s l i g h t l y  d i f f e r e n t  p r o p e r t i e s ,  are added to- 
ge ther  t o  ob ta in  t h e  t o t a l  flow i n  the channel. Each streamtube is handled 
i n  much t h e  same way as is  the  one streamtube i n  t h e  one-dimensional problem. 
I n  the  l i m i t ,  as the  s ize  of the  ind iv idua l  streamtubes approaches zero, t h e  
STC method s a t i s f i e s  t h e  inv i sc id  equations of motion exac t ly .  



T h i s  report descr ibes  the  method of ana lys i s  used t o  apply t h e  Stream- 
tube Curvature Relaxation technique, t he  numerical procedure f o r  computer- 
i z a t i o n  of the  ana lys i s ,  and examples of c o r r e l a t i o n s  of predicted flow 
f i e l d s  on nace l l e s  a t  t ransonic  speeds with wind tunnel  test  da t a .  

The computer program source deck, together  w i t h  a u s e r ' s  manual, is  
ava i l ab le  from COSMIC (Computer Softwear and Information Center) ,  Burrows 
Ha l l ,  University of Georgia, Athens, Georgia 30601. The program i s  w r i t t e n  
i n  CDC Fortran 2.3 source language, except f o r  t h ree  subrout ines  i n  Compose 
1.1 language. The computer program has been checked out f o r  t h e  CDC 6600 
machine. 

2 



2.0 SELDCTION OF THE METHOD 

Known methods for solving t ransonic  f l o w  f ields may be divided i n t o  t w o  
ca t egor i e s  -- time-dependent and i t e r a t i v e .  Time-dependent methods have 
achieved much popular i ty  because both the subsonic and supersonic por t ions  
of t h e  f l o w  f i e l d ,  i n  m o s t  cases, are solved by t h e  same algorithm. Thus, 
w i t h  a rather s imple ca l cu la t ing  procedure a d i f f i c u l t  mathematical problem 
is  computed. I n  the  i t e r a t i v e  method, however, the  c a l c u l a t i o n  fonnula must 
reflect t h e  mathematical nature  of the  equation and a switching, depending 
upon Mach number, t o  the  appropriate  formula is required a t  each ca l cu la t ion  
point .  It  is  i n  t h i s  way t h a t  t he  d i f f e r e n t  physical  characteristics of the  
subsonic and supersonic regions come i n t o  play. 

I t e r a t i v e  methods are qu i t e  new. To the  au thors '  knowledge, t he  first 
demonstration of a general ,  numerically cons i s t en t ,  i t e r a t i v e  method f o r  
solving t r anson ic  flows occurred i n  1970 ( r e f .  1). T h i s  w a s  the  small per- 
t u rba t ion  method of Murman and Cole f o r  f l o w  past  a i r fo i l s  without l i f t .  
Recently, extensions t o  the method have been presented by Stegger and Lomax 
(ref. 2). 

Although there undoubtedly are many va r i a t ions ,  w e  may th ink  of an 

(1) wr i t ing  a l i n e a r  ap- 
i t e r a t i v e  method as one i n  which the equat ion for  the  unknown f l u i d  dynamic 
property a t  each of the n e t  po in ts  is solved by: 
proximation t o  t h i s  equation and, (2) solving the r e s u l t i n g  system of equa- 
t i o n s  simultaneously. Because of t h e  l i n e a r  approximation, t h i s  process is 
repeated seve ra l  times (say  3 to  10) before convergence is obtained. 

I n  c o n t r a s t  to solving the f i e l d  simultaneously,  time-dependent methods 
compute the  wave motion of a dis turbance as it t r a v e l s  from one pa r t  of the 
flow f i e l d  t o  the other. A s teady-s ta te  r e s u l t  i s  obtained only af ter  a l l  
wave r e f l e c t i o n s  have d i s s ipa t ed  t o  a r e l a t i v e l y  small l eve l .  Although the 
time-dependent method of updating the f l o w  p rope r t i e s  can be l ikened t o  an 
i t e r a t i o n  process, clearly the m o s t  rapid so lu t ion  w i l l  be obtained when 
the  f low f i e l d  va r i ab le s  a r e  a l l  corrected simultaneously and when t h i s  cor- 
r e c t i o n  is  not l imi ted  by (computationally) s l o w  wave t r a n s i t s .  Therefore, 
as a r ap id  a n a l y s i s  tool ,  t h e  i t e r a t i v e  method is most a t t r a c t i v e .  

O f  the many d i f f e r e n t  representa t ions  of the  f l u i d  dynamic equat ions,  
the  number which can be solved by t h e  i t e r a t i v e  method across t h e  t ransonic  
region are, perhaps, l imi ted .  Here the  s implest  and m o s t  general  fonns of 
the  equat ions are chosen, namely, those  which apply along s t reamlines  ( y !  = 
constant  l i n e s )  and those which apply along l i n e s  which a r e  orthogonal t o  
t h e  s t reaml ines  ( 5  = constant  l i nes ) .  

Across the s t reamlines ,  the  con t inu i ty  and momentum equat ions are: 

Continui ty:  

( 5  = Const) 
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Momentum : 

(a)  Normal form: 

(b) Crocco form: 

( 5  = Const) 

( 5  = Const) 

Along the  s t reaml ines  the  energy and momentum equat ions are: 

Momentum : 

DS - = o  
Ds 

Energy: 

(Y = Const) 

( Y  = Const) 

where, t he  independent va r i ab le s  s and n are t h e  d is tances  measured along 
and across  t h e  streamlines, respec t ive ly .  

The so lu t ion  method i s  an extension of t he  s t reamline curvature  method. 
I t  may be b r i e f l y  described a s  follows: F i r s t ,  a crude g r id  of s t reamlines  
and orthogonal l i n e s  is  assumed ( r e f e r  t o  Figure 1); second, t h e  curvature  
of the  s t reamlines  a t  each of the  gr id  poin ts  is  evaluated;  t h i r d ,  t h e  mo- 
mentum equation i s  in tegra ted  along a l i n e  normal t o  the  s t reamlines  t o  
obta in  v e l o c i t y ,  and the  con t inu i ty  equation i s  in tegra ted  t o  determine t h e  

are indica ted  by the  x i n  Figure 1. Fourth,  an adjustment (6n) is  com- 
puted by considering: (1) the d i f f e rence  between the  computed and assumed 
s t reamline pos i t i ons  and, (2) t he  e f f e c t  of t he  implied curvature  modifica- 
t i o n  i n  t h e  in tegra ted  momentum equation. F ina l ly ,  t h e  s t reamlines  a r e  re- 
posit ioned by the  6n values. 

co r rec t "  s t reamline pos i t i ons  ( f o r  the  assumed curvature  f i e l d ) .  These 11 

I t  I t  

Because t h e  movement of any one gr id  point a l ters  t h e  ve loc i ty  a t  
nearby points  through a change i n  curvature ,  it i s  highly des i r ab le  t o  
account f o r  t hese  i n t e r r e l a t i n g  point adjustments simultaneously. The 
u t i l i z a t i o n  of a simultaneous so lu t ion  procedure, employed here ,  i s  not 
pa r t  of t he  c l a s s i c a l  s t reamline curvature  method ( r e f s .  3, 4, 5). In  
comparison, t he  c l a s s i c a l  method y i e lds  ca l cu la t ion  times which a r e  v e r y  
slow, e spec ia l ly  f o r  a c lose ly  spaced ca l cu la t ion  gr id .  I n  concept,  t he  set 
of simultaneous equat ions f o r  t h e  normal streamline adjustments is  formulated 
from t h e  f i n i t e  d i f f e rence  equivalent  of t he  following equation: 
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1 .  Assume a Crude Grid 

2. Evaluate Curvature 

3 .  Integrate the  Cross-Stream 
Momentum Equation and the  
Continuity Equation t o  Determine 
the "Correct" Streamline P o s i t  ions .  

4 .  Solve t h e  Matrix Equation for 
6n and Move the  Grid Points .  

Figure 1 .  Solution Technique. 
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where : 

6n = Required s t reamline adjustment i n  the normal d i r e c t i o n  

Y = Stream funct ion 

s = Curvi l inear  d i s t ance  along a given s t reamline 

M = Mach number 

pV = Flow per  u n i t  area 

F = Driving (or e r r o r )  funct ion der ived from t h e  so lu t ion  t o  
the i n t e g r a l  con t inu i ty  and normal momentum equat ions 

T h i s  equat ion  is der ived  in Appendix A fo r  the  spec ia l  case of isen- 
t r o p i c  two-dimensional flow. (These l imi t ing  assumptions are u t i l i z e d  only 
t o  maintain s impl i c i ty  of i l l u s t r a t i o n ;  t h e y  are not p a r t  of t h e  computer 
program.) From a mathematical point  of v iew,  t h e  above equation i s  s imi l a r  
t o  the  small per turba t ion  form of t h e  ve loc i ty  po ten t i a l  equation employed 
by Murman and Cole (ref. 1). 

- V << 1, M W -  U 
a a 

I n  either case ,  it is  possible  t o  numerically solve t h e  equat ions f o r  e i t h e r  
subsonic flow o r  supersonic f l o w  by  changing t h e  f i n i t e  d i f fe rence  s t a r  from 
a subsonic representa t ion  t o  a supersonic representa t ion  a s  i l l u s t r a t e d  i n  
Figure 2. Notice t h a t  the  supersonic representa t ion  includes no poin ts  down- 
stream of t h e  cross-stream l i n e ,  r e f l e c t i n g  the physical  r e a l i t y  t h a t  d i s -  
turbances downstream w i l l  not be f e l t  upstream. The s tar-switching process 
i s  d i r e c t l y  r e l a t e d  t o  t h e  c o e f f i c i e n t  (1-M2) ; and, because t h i s  c o e f f i c i e n t  
i s  zero a t  uni ty  Mach number, t h e  switch from one s tar  t o  the o t h e r  i s  per- 
formed smoothly. 

The extended s t reamline curvature  method, here referred t o  a s  t h e  
Streamtube Curvature (STC) method, appears t o  have the  advantage t h a t  it i s  
appl icable  t o  the ca l cu la t ion  of nonsmall per turba t ion  t ransonic  f lows.  
Considerable complexity i s  introduced when Equation 6 i s  expanded t o  allow 
the  v e r t i c a l  component of ve loc i ty ,  v ,  t o  be the  order of magnitude of the  
a x i a l  component u. I n  t h i s  case when t h e  g r id  sys t em is not a l igned w i t h  
t h e  f l o w  d i r e c t i o n ,  a c ross -der iva t ive  term: 
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Figure 2. Finite Difference Stars for Subsonic 
and Supersonic Flow. 
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appears i n  t he  d i f f e r e n t i a l  equation, and t h e  stax-switching concept (as 
explained above) cannot be applied.  On the  o ther  hand, w i t h  t h e  i n t r i n s i c  
coordinate  system u t i l i z e d  i n  t h e  Sl’C procedure, the  arms of t he  star a r e  
always or ien ted  i n  t h e  streamwise and cross-stream d i r ec t ions ,  and t h e  s ta r -  
switching algorithm is always appropriate.  

S t a r  switching is  one of the requirements f o r  the  numerical so lu t ion  
t o  either Equations 5 or 6 i n  a mixed subsonic and supersonic region. A 
second requirement i s  a reasonably accurate  evaluat ion of t h e  nonl inear  
c o e f f i c i e n t  tern (1-M 1. In t h i s  respec t ,  t h e  ve loc i ty  p o t e n t i a l  method 
is  superior .  During the  cur ren t  con t r ac t ,  it has been found t h a t  the  coef- 
f i c i e n t  term i n  the d i f f e r e n t i a l  equation (Equation 5 above) cannot r e a d i l y  
be evaluated t o  the accuracy necessary f o r  a convergent t ransonic  so lu t ion  
when t h e  streamwise spacing between the  ca l cu la t ion  poin ts  is  too small. 
T h i s  ev ident ly  is  due t o  t h e  method used f o r  evaluat ing t h e  ve loc i ty  (and 
Mach number) a t  f i e l d  mesh points .  The ve loc i ty  ca l cu la t ion ,  using Equa- 
t i o n  2b, r equ i r e s  the evaluat ion of curvature  by  a second-order numerical 
d i f f e r e n t i a t i o n  which is subjec t  t o  la rge  e r r o r s  (order of l/lls2) when the  
streamwise spacing (AS) is small. 

2 

Aside from t h e  l i m i t a t i o n  j u s t  c i ted,  the streamtube curvature  method 
is extremely powerful as indicated by the  following fea tures :  

0 No add i t iona l  complexities a r i s e  when the  flow is  r o t a t i o n a l .  

0 The s l i p  l i n e  between an exhaust je t  and the  ex te rna l  f l o w  can 
be handled prec ise ly .  (The procedure is t o  consider two coincident  
s t reamlines .  Thei r  pos i t ion  and pressure are the same; the i r  
ve loc i ty  and s tagnat ion  proper t ies  may be d i f f e r e n t , )  

0 The streamline/orthogonal l i n e  g r id  provides a mapping of t h e  flow 
f i e l d  i n t o  a rec tangular  domain. T h i s  i s  he lpfu l  from t h e  stand- 
point of computer program organization. 

The S l T  Program has a l s o  been designed to: 

0 Handle m u l t i p l e  streams 

0 Place g r i d  poin ts  a t  loca t ions  i n  t h e  flow f i e l d  where t h e y  a r e  
needed, as determined by l o c a l  va r i a t ions  of the  dependent 
va r i ab le s  

0 Allow ex te rna l  flow ana lys i s  by incorporat ing matched near - f ie ld  
and f a r - f i e ld  so lu t ions .  The f a r - f i e l d  so lu t ions  a r e  obtained 
a n a l y t i c a l l y  u t i l i z i n g  small per turbat ion theory. 
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3.0 AN OUTLINE OF THE CAI.CULATION STEPS 

The opera t ions  performed by the  Sm Program may be out l ined  as follows: 

1. Define the  flow regions and loca te  (approximately) t h e  "primary" 
orthogonals and the  s t reamlines  which d iv ide  the  i n t e r n a l  and 
ex te rna l  flows. 

2. Refine the gr id  a s  required by i n s e r t i n g  add i t iona l  s t reamlines  
and orthogonal l i n e s  between those already ex i s t ing .  

3. Compute the s t reamline angles  and curvatures.  

4. Compute the  orthogonal l i n e  angles and move t h e  gr id  poin ts  along 
t h e  s t reamlines  t o  obta in  or thogonal i ty .  

5. Compute the  v e l o c i t i e s  on t h e  " f a r f i e l d "  boundary. 

6 .  Adjust the flow rates i n  the  exhaust streams, i f  any, t o  meet the  
ca lcu la ted  choking flow ra t e .  

7 .  In t eg ra t e  along each orthogonal t h e  momentum and con t inu i ty  
equat ions (Equations 1 and 2). 

( 9  

8 .  Determine i f  the s t reamline pos i t ions  are wi th in  a "rough tolerance.  
I f  so, r e t u r n  t o  S tep  2 for addi t iona l  g r id  refinement (unless  gr id  
refinement l i m i t s  have already been reached). Otherwise, cont inue 
t o  S tep  9. 

9. Determine i f  the s t reamline pos i t ions  a r e  wi th in  f i n a l  tolerance.  
If so, jump t o  S tep  13. Otherwise continue t o  S tep  10. 

10. Set up the  matr ix  equation f o r  the  s t reamline co r rec t ion ,  6n. 

11. Solve the  matr ix  equation. 

12. Modify the  s t reamline pos i t i ons  by 6n, and r e t u r n  t o  S tep  3. 

13. Calcu la te  and p r i n t  the output q u a n t i t i e s ;  then r e t u r n  t o  S tep  1 
for t h e  next case ,  i f  any. I 

The first operat ion includes reading the card input for  a desc r ip t ion  
of t he  geometry and f l o w  proper t ies .  The computer program has been w r i t t e n  
t o  have general  c a p a b i l i t y  f o r  analyzing a great v a r i e t y  of configurat ions.  
The first s t e p  i n  the programmed log ic  is t o  develop a t a b l e  of orthogonals 
or c a l c u l a t i o n  s t a t i o n s  for  each of t h e  severa l  flow regions.  The regions 
are determined a s  i l l u s t r a t e d  i n  Figure 3,  so t h e  c a l c u l a t i o n  can proceed 
from upstream t o  downstream. The boundary of each region is  defined as a 
primary orthogonal. As shown i n  Figure 4, the i n i t i a l  g r id  which i s  de- 
veloped conta ins  only t h e  primary orthogonals and the  double s t reaml ines  
which separa te  t he  var ious streams. 
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The second s t e p  i n  t h e  computational procedure i s  the  gr id  refinement. 
The v e r y  crude g r id ,  obtatned i n  S t e p  1, i s  re f ined  before t h e  first so lu t ion  
of the  flow f i e l d  equat ions i s  executed. A new orthogonal i s  placed within 
each region and, l ikewise ,  a s t reamline is  inser ted  i n  the  middle of each 
channel. In  t h e  ex te rna l  channel,  addi t iona l  s t reamlines  a r e  placed c l o s e  
t o  t he  body. A f t e r  the so lu t ion  has  been obtained f o r  t h i s  n e t ,  t he  g r i d  
i n t e r v a l s  a r e  halved a s  required.  T h i s  may be l ikened t o  t h e  s t e p s  taken 
when one 
normals a r e  sketched i n ,  and then more and more s t reamlines  and orthogonal 
l i n e s  a r e  added u n t i l  t h e  desired re so lu t ion  i s  obtained. A t  each s t e p  i n  
t h e  process,  the  pos i t ions  of the  l i n e s  a r e  adjusted t o  meet t h e  co r rec t  
so lu t ion  requirements. The procedure automatical ly  provides f o r  g r id  re- 
finement i n  regions of high curvature  and high acce le ra t ion  o r  dece lera t ion .  
The s t reamline and orthogonal l i n e s  which are added between e x i s t i n g  l i n e s  
are not required t o  span the  f i e l d  i f  only loca l  refinement,  near  t he  body, 
i s  required.  The refinement procedure present ly  b u i l t  i n t o  t h e  program u s e s  
a c r i t e r i a  involving the  d i s t ance  and ve loc i ty  increment between g r id  points .  
These refinement c r i t e r i a  are discussed i n  d e t a i l  i n  Reference 16. 

I t  f l u x  plots"  a flow f i e l d  by hand. F i r s t ,  major flow l i n e s  and 

The t h i r d  s t e p  i n  t h e  method i s  t o  determine t h e  angles  and c u r v a t u r e s  
of t h e  s t reaml ines  a t  each gr id  point .  For subsonic por t ions  of t h e  flow 
f i e l d ,  t h i s  i s  !performed by f i t t i n g  a piecewise continuous cubic polynominal 
i n  a coordinate  sys t em which i s  l o c a l l y  ro ta ted  f o r  each in t e rva l .  The re- 
s u l t i n g  f i t  i s  analogous t o  t h e  curve produced by  a beam which is  loaded by 
d i s c r e t e  fo rces  t o  pass through the given g r id  points .  The l o c a l l y  ro ta ted  
coordinate  system removes the  r e s t r i c t i o n  t h a t  requi res  t he  s lope  t o  be 
small. For g r i d  poin ts  located i n  a supersonic region,  backward d i f f e rence  
formulas are employed. E i t h e r  3-point o r  &poin t  formulas may be 
op t iona l ly  selected. Again t h e  coordinate  system i s  ro t a t ed  so t h a t  s lopes 
i n  t he  cu rve - f i t t i ng  coordinate  system are small. 

In  the  four th  s t e p ,  t h e  or thogonal i ty  of t h e  g r id  poin ts  i s  checked and 
poin ts  a r e  moved along the  s p l i n e  curve a s  required t o  achieve normal in- 
t e r s e c t i o n s  between t h e  two sets of l i n e s .  Also, t he  normal d i s t ance ,  n ,  
i s  computed f o r  each .g r id  point  a s  measured from t h e  lower boundary of t he  
orthogonal. 

When t h e  i n i t i a l  g r i d  i s  set up, a boundary i s  placed some d is tance  
away from the  body. 
f i e l d  and the f a r - f i e l d  so lu t ions .  The near - f ie ld  is computed by the! stream 
tube curvature  method, and the f a r - f i e l d  i s  computed by  l i n e a r  small per- 
tu rba t ion  theory. In  t h e  process of i t e r a t i n g ,  t h i s  boundary (which i s  
a l s o  a s t reamline)  w i l l  f l o a t  so t h a t  i ts  shape and ve loc i ty  d i s t r i b u t i o n  
a r e  matched by both the  inner  and ou te r  so lu t ions .  I n  p rac t i ce ,  t h e  shape 
of t he  i n t e r f a c e  s t reamline (also re fe r r ed  t o  as t h e  f a r - f i e l d  boundary) i s  
first assumed. Using t h e  f a r - f i e l d  equat ions,  the  ve loc i ty  d i s t r i b u t i o n  i s  
ca lcu la ted .  This  is  S tep  5. These v e l o c i t i e s  are subsequently employed i n  
t h e  near-f ie ld  ana lys i s  and from t h i s  comes a rev ised  shape f o r  the  inter-  
f ace  s t reamline.  Revised v e l o c i t i e s  w i l l  then be computed i n  S tep  5 during 
t h e  following i t e r a t i o n  cyc le ,  and so f o r t h .  

T h i s  boundary becomes t h e  i n t e r f a c e  between the  near- 
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Step  6 i s  the  modif icat ion,  a s  required,  of the flow rates of t h e  ex- 
haust streams. For b o a t t a i l  a n a l y s i s  of nace l l e s ,  t h e  i n t e r n a l  geometry 
of the  exhaust passage i s  required input  t o  the S'IC program. Because of 
s t reamline curvature  effects, t he  discharge c o e f f i c i e n t  f o r  t h e  nozzle w i l l  
be somewhat less than uni ty .  The user ,  however, may input a f l o w  rate based 
on un i ty  discharge flow c o e f f i c i e n t  or,  for t ha t  matter, any approximate 
value. Determination of the ve loc i ty  d i s t r i b u t i o n  across the th roa t  of the  
nozzle w i l l  be determined within t h e  STC framework, and t h e  evaluat ion of 
the maximum "choked" flow rate is  S tep  6 of t h e  ca l cu la t ion  procedure. 

S t e p  7 is the so lu t ion  of the  flow f ie ld  equat ions per se. T h i s  s ec t ion  
I1  of the program is  referred t o  as the " f l o w  balance;  

integrated.  In  t h e  ex te rna l  regions of the f i e l d ,  t h e  momentum equation is  
in tegra ted  from the  far-field i n t e r f a c e  boundary t o  the body (or to  t h e  
c e n t e r l i n e  or lower boundary, whichever e x i s t s ) .  
momentum equation i s  : 

Equations 1 and 2 a r e  

The i n t e g r a l  form of t h e  

lnVk2 - l"VN = 2 I"" Cdn 

"k 

( 7 )  

where : 

VN = V e l o c i t y  a s  determined i n  S tep  5 along the far-f ie ld  s t reamline 

vk  = Veloc i ty  a t  any s t reamline w i t h  orthogonal d i s t ance  nk 

nN = Distance measured along t h e  orthogonal to  the f a r - f i e ld  
stream 1 ine  

Although not reflected i n  Equation 7 ,  t h e  effect of varying t o t a l  pres- 
sure  behind a shock wave is  a l s o  included. The method for  handling t h i s  is 
presented i n  Sec t ion  5.5. Also, i f  a s l i p l i n e  occurs  i n  t h e  f i e l d ,  t h e  ve- 
l o c i t y  jump equat ions 

Y-1 

('p+ TT+ H+ 

are employed where the  subsc r ip t s  (+) and (-1 denote condi t ions  on the 
s t reamlines  above and below the  s l i p l i n e ,  respec t ive ly .  

13 



The ve loc i ty ,  t o t a l  tempera ture ,  and t o t a l  pressure allow determination 
of t he  dens i ty  a t  each g r i d  poin t ,  and the  inverse  product of dens i ty  and 
ve loc i ty  i s  in tegra ted  t o  f ind  flow area.  

The cumulative flow a reas  ca lcu la ted  by Equation 9 are compared w i t h  
the  geometric a reas  of t he  s t reamlines  used i n  S tep  3. The d i f f e rence  be- 
tween these  two values  i s  used a s  a convergence check (Steps 8 and 9) and 
i n  t h e  s t reamline co r rec t ion  equation, S t ep  10. 

For i n t e r n a l  flow orthogonals,  t h e  ve loc i ty  a t  t he  o u t e r  boundary 
(VFF i n  Equation 7 )  i s  not known. Instead,  an i t e r a t i o n  process i s  employed 
whereby the  ou te r  boundary ve loc i ty  is varied t o  obta in  a match i n  t h e  cal-  
cu la ted  geometric passage area.  

I n  S teps  10 and 11, t h e  proper adjustment of the  s t reamline pos i t i ons  
i s  determined; and, i n  S t e p  12 ,  t he  g r i d  poin ts  are moved i n  the  normal 
d i r e c t i o n  by t h i s  computed adjustment. 

The i t e ra t ive  sequence is  t o  s t a r t  w i t h  a crude g r i d ,  a s  noted above, 
and t o  repea t  S t eps  3 through 12 u n t i l  t he  flow balance e r r o r  i s  s m a l l .  
T h i s  i s  o f t en  accomplished i n  one o r  two i t e r a t i o n s .  The g r id  is  then re- 
f ined  t o  t he  next l e v e l ,  and the  f i e l d  i s  reconverged. The refinement/con- 
vergence process i s  continued u n t i l  t h e  g r id  refinement c r i t e r i a  is s a t i s -  
f i e d ,  o r  a l t e r n a t e l y ,  u n t i l  computer s torage  l i m i t s  a r e  reached. 
po in t ,  add i t iona l  loops through Steps  3 t o  12 may be performed u n t i l  t h e  
flow balance e r r o r  i s  s a t i s f a c t o r y .  

A t  t h i s  

In  the  next s ec t ion ,  examples a r e  shown of STC p red ic t ions ;  and, i n  
Sec t ion  5 ,  t h e  d e t a i l s  of t he  numerical pqocedures are presented. 

14  



4.1 

4.0 

SHORT DUCT FAN INSTALLATIW 

EXAMPLE RESULTS 

The developnent of t h i s  computer a n a l y s i s  has been addressed t o  tran- 
sonic  pressure d i s t r i b u t i o n s  on typ ica l  jet  engine i n s t a l l a t i o n s  i n  i so l a t ed  
nace l les .  The a n a l y s i s  was required t o  handle i n l e t  flows and exhaust flows 
with correct aerothermodynamic propert ies .  
t h e  c a p a b i l i t i e s  is  the short duct  f an  i n s t a l l a t i o n .  

An example which demonstrates 

The i n s t a l l a t i o n  and the predicted flow f i e l d  a t  M, = 0.5 a r e  shown 
i n  Figure 5. Four flows are present i n  t h i s  example: 1) t h e  f r e e s t r e a m  
or ex te rna l  f l o w  a t  MO = 0 . 5 ,  2) t h e  i n l e t  f l o w  f o r  a mass-flow r a t i o  of 
1.0, 3) t h e  f an  nozzle f l o w ,  and 4) t he  core nozzle flow. The fan nozzle 
and core  nozzle flow have temperature and pressure p r o f i l e s  t y p i c a l  of t h i s  
type of jet  engine. 

The details  of t h e  fan  nozzle flow a t  a s u p e r c r i t i c a l  nozzle pressure  
ra t io ,a re  shown i n  F igure  6. 
a nea r - s t a t i c  nozzle expansion. The r a d i a l  s h i f t i n g  of t he  s t reamlines  due 
t o  flow curva ture  is very evident.  

The ex te rna l  flow is a t  & = 0.02 t o  represent  

4.2 TWO-DIMI$NSIONAL INLET 

The two-dimensional i n l e t  with the  ramp adjacent  t o  t h e  a i r c r a f t  fuse- 
lage  ( t y p i c a l  of two-dimensional f ighter- type i n l e t  w i t h  boundary layer  
bleed) is shown i n  Figure 7 .  
with th ree  flows. 
i n l e t  flow was choked a t  t h e  i n l e t  th roa t .  

The flow f i e l d  f o r  t h i s  i n l e t  was ca lcu la ted  
The i n i t i a l  free-stream Mach number w a s  Mo = 0.8. The 

The pressure d i s t r i b u t i o n  on the  ex te rna l  sur face  of the  cowl is 
shown i n  Figure 8, The maximum sur face  Mach number w a s  0.998. 

The pressure d i s t r i b u t i o n s  on the ramp and the upper w a l l  of the 
i n l e t  are p lo t t ed  i n  Figure 9. The local Mach numbers exceed un i ty  a s  
t h e  ramp t u r n s  toward the  a x i a l  d i r e c t i o n  i n  t h e  th roa t .  The wa l l s  down- 
stream of the  th roa t  were defined as s t r a i g h t  i n  t h i s  example, and t h e  
pressure l e v e l s  shuw uniform flow a t  Mach = 1.0. 

4.3 DATA COMPARISONS - AXISMQMETRIC INLETS 

The NASA i n l e t  No. 8 (USA 1-85-1001, w i t h  an i n t e r n a l  cont rac t ion  
r a t i o  of Am/AThroat = 1.093, was selected a s  the Configuration for  data 
comparisons. This  i n l e t  represents  a t y p i c a l  f l i gh t - type  i n s t a l l a t i o n  for 
high t ransonic  f l i g h t  Mach numbers. The geometry c o n s i s t s  of a NACA 1 
series externa l  contour with an X/Dmax. = 1.0 and a 
shown i n  Figure 10. The projected area d i s t r i b u t e d  is  shown i n  Figure 11. 
T h i s  i n l e t  was t e s t e d  i n  t h e  16-foot t ransonic  wind tunnel  a t  NASA-Langley. 

= 0.8535 a s  
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The i n l e t  No, 8 w a s  analyzed with the  streamtube curvature  ana lys i s  f o r  
three Mach numbers and two mass flow ratios.  The se lec ted  Mach numbers 
were nominally 0 . 8 ,  0.85, and 0.90, and the  mass flow r a t i o s  were nominally 
0 . 8  and 0.88. The a c t u a l  values  were set t o  match t h e  measured test r e s u l t s  
f o r  Mach number and mass flow r a t i o .  No mass flows below 0.80 were considered 
because inspec t ion  of test  d a t a  ind ica ted  t h a t  flow separa t ion  w a s  present 
on the  ex te rna l  sur face  l i p .  

The S'E ana lys i s  i s  an inv i sc id  flow predict ion.  Viscous effects such 
a s  boundary l aye r  displacement th ickness  and separa t ion  have t o  be 
accounted f o r  i n  a separa te  ana lys i s .  A tu rbulen t  boundary layer  technique 
(SAB) has been incorporated i n  t h e  t ransonic  ana lys i s  (see Addendum). Some 
of t h e  predicted r e s u l t s  shown here w i l l  include viscous effects. These 
resul ts  w i l l  be discussed more f u l l y  

A t y p i c a l  predicted flow f i e l d ,  
Figure 12 f o r  t h e  i n l e t  a tMo = 0.92 
not  one of t h e  Mach numbers included 
c a l c u l a t i o n  r e s u l t s .  The e x t r a  gr id  
is evident .  

The comparison of t h e  predicted 

i n  t h e  Addendum. 

a f t e r  12 gr id  refinements,  i s  shown i n  
and a mass flow r a t i o  of 0.88. T h i s  is 
above, but i s  used f o r  demonstrating the  
refinement i n  t h e  l i p  s tagnat ion  region 

pressure on the  cowl sur face  w i t h  t he  
measured pressures  i s  shown i n  Figure 13. The measured pressures  cons i s t  
of three l i n e s  of s ta t ic  t a p s  a t  three c i rcumferent ia l  pos i t i ons  (O', 90°, 
and 180' forward looking a f t ) .  
nace l le  cowl. The comparison p l o t  is arranged so t h a t  t h e  h ighl ight  diameter 
occurs a t  an a x i a l  d i s t ance  of zero, and t h e  in t e rna l  sur face  of t he  cowl 
l i p  is  shown as a negat ive d is tance .  Thus, the  sur face  pressure d i s t r i b u t i o n  
can be represented a s  a continuous curve. 

Note t h a t  t h e  flow is  symmetric over t h e  

The predicted r e s u l t s  from S ' E  show t h a t  t h e  s tagnat ion  point is located 
exac t ly ,  and t h a t  t h e  p re s su re  d i s t r i b u t i o n  is predicted q u i t e  accurately.  
The sonic  pressure c o e f f i c i e n t ,  Cp*, i s  indicated,  and t h e  comparison shows 
t h a t  a shock is present  on t h e  inner  surface.  The mass flow r a t i o  i s  rela- 
t i v e l y  high so t h a t  t h e r e  is l i t t l e  acce lera t ion  over t he  ex te rna l  surface.  

The comparisons of predicted pressure d i s t r i b u t i o n s  from the  STC 
ana lys i s  w i t h  t h e  NASA-Langley test r e s u l t s  from the  16-foot wind tunnel  
a r e  shown i n  Figures  14 through 20. These cover the range of Mach numbers 
and mass flows listed above. 

A t  Mo = 0 . 8 ,  t h e  comparisons are general ly  good f o r  a so lu t ion  repre- 
sen t ing  700 g r i d  po in t s  (solid l i n e s  i n  Figures 14 and 15.) When 1100 g r id  
po in t s  were used f o r  a mass flow r a t i o  of 0.81, the  l o c a l  o s c i l l a t i o n s  i n  
t h e  inv i sc id  f l o w  were evident .  The test data ind ica t e  t h a t  viscous e f f e c t s  
on t h e  w a l l  e l imina te  t h i s  pressure f luc tua t ion .  Later  a n a l y s i s  w i t h  t h e  
viscous ana lys i s  pred ic ted  l o c a l  separat ion (see Addendum). 

A t  Mo = 0.85 and a mass f l o w  r a t i o  of 0.8819, t he  c o r r e l a t i o n s  between 
measured and predicted s t i l l  show good agreement (Figure 16). For a mass 
flow r a t i o  of 0.8064 a t  Mo = 0.85, t he  e f f e c t s  of compression waves and 
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viscous i n t e r a c t i o n s  a r e  evident (Figure 17). The inv i sc id  pressure dis- 
t r i b u t i o n  predicted by the  STC ana lys i s  i nd ica t e s  compression waves, both 
w i t h  700 g r i d  po in t s  and w i t h  900 gr id  poin ts  including viscous e f f e c t s .  
Also, local sepa ra t ion  i s  predicted a f t e r  t h e  first compression wave. From 
the experimental pressure measurements, it i s  not evident  t h a t  t h e  flow 
separa t ion  e x i s t s  over a l a rge  region. Once the flow reattaches, there is  
exce l l en t  agreement between the measured and predicted pressures.  I n  the  
local region on the cowl l i p ,  there i s  evidence of viscous shock interac-  
t i o n s ,  and the  inv i sc id  flow ca lcu la ted  by the S'IC a n a l y s i s  w i l l  not cor- 
relate with t h e  test data .  

The comparisons a t  Mo = 0.90 ind ica t e  t h a t  viscous e f f e c t s  are more 
important. The predicted flow f i e l d  a t  a mass flow r a t i o  of 0.885 agrees 
much better when boundary layer displacement th ickness  is  included (Figure 
18). A t  a mass flow rat io  of 0.81 (Figure 191, the predicted pressure dis-  
t r i b u t i o n  shows severa l  s t rong  compression waves, and separa t ion  is indi- 
cated.  From t h e  experimental pressure measurements, there i s  evidence t h a t  
t he  flow separa t ion  e x i s t s  over t h e  i n i t i a l  por t ion  of the  cowl l i p .  The 
measurements appear t o  show a gradual recompression followed by a weaker 
wave a t  an a x i a l  d i s t ance  of 1.5. The viscous e f f e c t s  are very evident ,  
and the  inv i sc id  ana lys i s  needs t o  be augmented wi th  a detailed boundary 
l aye r  ana lys i s .  

For a f u l l y  subsonic flow, the  inv i sc id  ana lys i s  by S ' E  p r e d i c t s  t h e  
wal l  sur face  pressures  exce l len t ly .  Figure 20 shows a comparison of Mo = 
0.70 and a mass flow r a t i o  of 0.87. 

The in tegra ted  pressure forces ,  both measured and predicted,  a r e  sum- 
marized i n  Table I. The in tegra ted  pressure drag on the  ex te rna l  sur face ,  
normalized by  free-stream dynamic pressure and maximum nace l l e  a rea ,  is 
noted as C D ~ .  
point and extends over the ex te rna l  sur face  to  the  maximum diameter. The 
i n t e g r a t e d  pressure  drag from t he  NASA-Langley test data is t h e  sum of the  
pressure  i n t e g r a l s  from t h e  three r o w s  of s ta t ic  t a p s  (Oo, 90°, and 180') 
appl ied t o  t h e  complete nace l l e  (where the  90' row is assumed f o r  t he  270' 
r o w ) .  The equation i s  a s  follows: 

For STC, t he  in t eg ra t ion  starts a t  the ca l cu la t ed  s tagnat ion  

The t o t a l  pressure drag on the i n l e t  is  predicted by summing t h e  
pressure i n t e g r a l  on the s tagnat ion  s t reamline ( add i t ive  drag)  and the  
pressure i n t e g r a l  on t h e  ex te rna l  surface.  This  t o t a l  fo rce  i s  again 
normalized by t h e  free-stream dynamic p r e s s u r e  and the maximum area. 
There are no comparable measured drag d a t a ,  s ince  t h e  fo rce  balance in- 
c ludes  t h e  f r i c t i o n  fo rce  on the  ex te rna l  surface.  A l s o  shown i n  Table 
I are the  number of g r i d  po in t s  used i n  the  so lu t ion  and whether the  
viscous e f f e c t s  (SAB) were included. 
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Table I. Integrated Pressure Forces. 

I 
1 0.8008 

0 
M 

’ 0.9001 

0.6974 

Grid Total  cDP QP 
Ao’AHL Measured Pred IC t ed cDP Poin ts  

0.8715 -0.023 -0.034 -0.008 7 15 

0.8754 -0.025 -0.023 0.006 6 26 

0.8093 -0.039 -0.044 0.009 656 

-0.039 -0.040 0.010 1091 

0.8093 -0.039 -0.047 0.004 997 

0.8819 -0,025 -0.030 -0.001 75 8 

0.8064 -0.044 -0.053 0.003 906 

-0.044 -0.059 -0.028 717 

0.8852 -0.0257 -0.022 0.009 700 

-0.0257 -0.031 -0.001 928 

0.8073 -0.050 -0.054 0.009 782 

0.8021 

SAB 

No 

No 

No 

No 

Y e s  

No 

Y e s  

No 

Y e s  

Yes 

Y e s  

0.8008 

0.8510 

0.8497 

0.9007 
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Overa l l ,  t h e  inv i sc id  ana lys i s  by STC i s  i n  general  agreement w i t h  the  
test measurements, except where viscous in t e rac t ions  a r e  s ign i f i can t .  The 
need to include viscous effects i s  obvious. Further  work i s  necessary t o  
properly def ine  the  separa t ion  bubble and t h e  point of reattachment. 

4.4 AFTERBODY WITH SHOCK 

A nacelle af terbody w i t h  a 24O b o a t t a i l  angle  was analyzed w i t h  t he  
Streamtube Curvature Analysis.  The geometry, shown i n  Figure 21, represents  
t h e  high subsonic c r u i s e  configurat ion of a nace l l e  af terbody designed f o r  
supersonic operat ion.  The afterbody model w a s  tested w i t h  a sting-mounted 
forebody a t  a Mach number of 0.90. A camparison of the experimental  r e s u l t s  
and t h e  predicted pressure d i s t r i b u t i o n  i s  shown i n  Figure 22. 

The predic ted  pressures  ind ica t e  a pressure drop o r  local acce le ra t ion  
around the  r ad ius  onto the 24’ b o a t t a i l ,  then a sharp compression o r  shock, 
The loca t ion  of t h i s  compression i s  a r e s u l t  of the  numerical s tar-switching 
procedures b u i l t  i n t o  the  S”C ana lys i s ,  when the ve loc i ty  changes from 
supersonic t o  subsonic. The s t r eng th  of t h e  shock i s  related t o  t h e  l o c a l  
change i n  curvature  across the orthogonal l i n e  de f in ing  t h e  star switch.  
The exac t  Rankine-Hugoniot equations are not included i n  order  to  not over- 
cons t r a in  the problem. The entropy rise across  the shock or  compression 
wave on any s t reamline can be def ined,  based on the s t a t i c  pressure rise 
def ined by the flow f i e l d .  I n  t h i s  p a r t i c u l a r  case, t h e  upstream Mach 
number was 1.31 and the downstream Mach number was 0.78.  This  corresponds 
t o  a normal shock a t  t h e  body surface.  Thus, without including the  exact  
shock r e l a t i o n s ,  t he  predicted compression represents  the loca t ion  and 
s t r eng th  of a normal shock. 

The experimental r e s u l t s  show tha t  the predicted compression wave o r  
shock is correctly posi t ioned,  but t h a t  t he  boundary layer separated a t  t h e  
shock. Once the flow separa tes ,  the s ta t ic  pressure i s  near ly  ambient over 
the remainder of the  boa t ta i l  and no effect of t h e  remaining b o a t t a i l  
geometry o r  jet  plume compression i s  evident.  Thus, t h e  S”C ana lys i s  can 
locate the shock pos i t i on  and spec i fy  i t s  approximate s t rength .  
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5.0 DETAILS OF THE NUMERICAL PROCEDURE 

I n  t h i s  s ec t ion  t h e  d e t a i l s  of the numerical procedures employed i n  the  
Streamtube Curvature program a r e  presented. 

I 5.1 GRID COORDINATE SYSTEM 

When the  o r i g i n a l  g r i d  is  established (as shown i n  Figure 4) 51 and 
52 coordinates  a r e  assigned t o  each orthogonal l i n e  and s t reamline.  These 
values  remain at tached t o  the  same l i n e  throughout t h e  ca l cu la t ion  procedure. 
51 general ly  has a value of zero  a t  the upstream boundary and increases  by  
8.0 or 16.0 across each region. 
lower boundary and i s  incremented by 8.0 across  each channel. Double stream- 
l i n e s  are used t o  separa te  the channels and each has the  same value of f2. 

S imi la r ly ,  t h e  s2 coordinate  is zero on t h e  

A s  t h e  g r i d  i s  subdivided during the  refinement process,  t h e  new l i n e s  
a r e  given coordinate  values  half way between those on either s ide .  
r e s u l t ,  each g r id  point  has a 51, 52 coordinate.  However, these coordinates  
are for nota t iona l  and bookkeeping purposes only. 51 and 52 values  do not 
e n t e r  i n t o  the so lu t ion  of the equations. 
Program because, w i t h  t h e  conventional counting system (such as t h e  stream- 
l i n e  number or the  orthogonal l i n e  index) the value assoc ia ted  w i t h  a given 
l i n e  would be changed when new l i n e s  are inse r t ed  i n t o  the  f i e l d ,  whereas 
t h e  51, 52 values  are not.  

As a 

They are employed i n  t h e  SIY: 

The s1 values  always increase  i n  t h e  downstream d i r e c t i o n ,  and t h e  52 
values  always increase  when one proceeds across  the  f i e l d  ( t o  t h e  l e f t  a f te r  
fac ing  downstream). Because of t h e  p o s s i b i l i t y  of mult ip le  channels,  t h e  
s t reamline and orthogonal l i n e  index values  a r e  not so ordered. 

Reference w i l l  be made t o  t h e  51 coordinate  i n  Sect ion 5.3, where t h e  
51 value is used t o  establ ish t h e  r e l a t i v e  spacing between orthogonal l i nes .  

5.2 CURVATURE OF THE STREAMLINES 

5.2.1 The Beam F i t  

The t h i r d  s t e p  i n  the  ca l cu la t ion  procedure as out l ined  i n  Sec t ion  3 is  
the determination of the s t reamline curvatures ,  angles ,  and cumulative curvi-  
l i n e a r  lengths  a t  each g r id  point.  An accura te  and rap id  method f o r  accom- 
p l i sh ing  t h i s  i s  t o  f i t  a draftsman's sp l ine  o r ,  equiva len t ly ,  t o  u s e  t h e  
formulas which apply t o  a beam loaded a t  discrete points .  
r e l a t i o n  which is appl icable  here is tha t  the  moment, M, v a r i e s  l i n e a r l y ,  or: 

The classical 

2 

dx 
d y E M b x  

2 E 1  (11) 
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I n  Equation 11, y is t h e  v e r t i c a l  displacement, E is the  modulus of 
e l a s t i c i ty ,  I is  t h e  c ross -sec t iona l  moment of i n e r t i a ,  and b i s  a constant .  
A l i m i t a t i o n  on Equation 11 is tha t :  

To ensure t h a t  t h i s  condi t ion  is s a t i s f i e d ,  t h e  coordinate  sys t em i n  
which the  equat ion f o r  the  beam c e n t e r l i n e  i s  wr i t t en  i s  ro t a t ed  a s  shown 
i n  Figure 23. As ind ica ted ,  t h e  curve- f i t  equations u t i l i z e  a d i f f e r e n t  
coordinate frame f o r  each i n t e r v a l .  For the  i n t e r v a l  between point i and 
i+l, t h e  o r i g i n  is placed a t  point  i and the  x-axis passes through point 
i+l. 

The displacement equat ion f o r  a beam with point loading i s  a cubic 
polynominal and may be expressed as: 

( f o r  t h e  ith i n t e r n a l )  2 3 + diX y = b x + C . X  
i 1 

A more convenient form of t h e  cubic  which passes through both poin ts  i and 
ii.1 is: 

Y- = y; (-g3 + g2) + y; (f3 - f 2 )  
AX 

(12) 

where : 

y: = s lope  a t  x = o 

y i  = Slope a t  x = AX 

f = x/Ax 

The cubic f i t  t o  the  ad jacent  i n t e r v a l s  must  be matched so t h a t ,  a t  the 
junc t ion  poin ts ,  t h e  angle  and curvature  a r e  the  same. As is i l l u s t r a t e d  
i n  Figure 23, t h i s  requi res :  

Good approximations t o  Equations 13 and 14, providing Aa i s  10' o r  
less, are:  
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and : 

- 'a(i) 'b(i-1) - 
3 I2 1 + -  y 3 I2 

+ 2 yb( i -1)  2 a ( i )  

Subs t i t u t ion  of Equation 15 i n t o  Equation 12, and t h e  r e s u l t  d i f -  
f e r e n t i a t e d  gives:  

A t  point  i, but for  t h e  i-1 i n t e r v a l ,  it follows from Equation 17 
tha t :  

For the same poin t ,  but f o r  the  ith i n t e r v a l ,  w e  have: 

Equations 18 and 19, subs t i t u t ed  i n t o  Equation 16 and rearranged, give 
I I .  t h e  following recurrence equation for ya(i) = bl . 

A l i  bi + 2(Ali + Agi) b i  + A b = - 2 A l i  A u ~  - A 3 i  A u ( ~ + ~ )  (201 31 ( i+U 

(i = 2 ,3 ,4  ..... N-1) 

where: 

Ali = Axi [ 1 + - 

3 I2 [ 1 + -  2 'b(i-1)I 
(i-1) 

Agi = AX 

Note t h a t  b i  is used i n  place of y i ( i )  t o  s implify t h e  notat ion.  
Notice t h a t  because of t h e  y: and y{ dependency, the values  of A cannot 
be evaluated d i r e c t l y ;  ins tead ,  t hey  are determined by i t e r a t i o n .  However., 
because ya i s  always very small, t w o  passes  (one co r rec t ion  pass) a r e  
genera l ly  s u f f i c i e n t  for  t he i r  determination. 

I 
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Given Ali and Agi, toge ther  w i t h  t h e  boundary condi t ion equat ions pre- 
sented below, t h e  set of equat ions given by Equation 20 y i e l d s  a t r i d i agona l  
matr ix  equation which i s  solved by standard procedures. 
using Equation 15. L ikewise ,  the ord ina te  a t  any intermediate  point can be 
computed b y  Equation 12 ;  and Equation 16, together  wi th  Equation 19, gives  
t h e  curvature  a t  each point .  

y; is  then evaluated 

The cu rv i l i nea r  d i s t ance  over the i n t e r v a l  i s  given by t h e  expression: 

1 
ds  = Axi j0 (1 + y ' )a  df 

I The f i r s t  t w o  terms of the  binominal expansion are:  

I 

( 1 + y y = 1 + 3 y  I + . 
Using Equations 12 and 23 i n  Equation 22 y i e l d s :  

(22) 

(23) 

This  equation is  employed t o  c a l c u l a t e  the  cumulative c u r v i l i n e a r  dis- 
tance along the s t reamlines .  

5.2.2 Beam End Condition Options 

Three d i f f e r e n t  end opt ions  a r e  ava i l ab le  with the  beam curve f i t :  

0 The angle  may be spec i f ied .  

0 The curvature  may be specified. 

0 The r a t i o  of y"' ( t h e  rate of change of curvature)  a t  t h e  end point 
t o  the value a t  t he  next-to-end point may be spec i f ied .  

A s  a ground r u l e ,  t h e  second opt ion i s  used f o r  f i t t i n g  the  s t reamlines .  
For those s t reamlines  which extend t o  t h e  f l o w  i n l e t  or flow e x i t  boundary, 
t h e  end curvature  i s  taken as zero. (A cons tan t  value of curva ture ,  d i f -  
f e r en t  from zero,  can also be enforced by user  input.)  I f  a s t reamline 
terminates  within t h e  f i e l d ,  the  end curva ture  is interpolated from t h e  
curvature  of t he  s t reamlines  above and below. 

The equat ions f o r  t he  three end opt ions ,  der ived from t h e  formulas 
listed i n  Sec t ion  5.2.1, for  the  f i r s t  end are given below: 

a)  Spec i f ied  Angle: 

b1 = t a n  (o1 - (1.1) 
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b) 

C )  

where : 

$1 = Speci f ied  angle  

c1 = Speci f ied  curvature  (= - d2y/dx2) 

a1 = Angle of t h e  chord between poin ts  1 and 2. 

The parameter F can be given t h e  following in t e rp re t a t ion .  When F = 0, 
t h e  curvature  i n  t h e  end i n t e r v a l  is  constant .  Hence, t h e  end i n t e r v a l  
polynominal i n  t h i s  case reduces t o  a parabola. When F = 1, the t h i r d  
de r iva t ive  i n  the  f i r s t  i n t e r v a l  is equal t o  t h e  t h i r d  d e r i v a t i v e  i n  t he  
second in t e rva l .  I n  t h i s  case ,  s ince  angle,  curva ture ,  and y"' a r e  a l l  
continuous a t  the second poin t ,  t he  same cubic equat ion spans t h e  f i r s t  
t w o  i n t e r v a l s  (a t  least to  a good approximation f o r  small Au2). 

Similar  equat ions t o  Equations 25, 26, and 27 can be w r i t t e n  f o r  t h e  
downstream (or second) end of t h e  beam f i t .  However, they are omitted here  
f o r  brevi ty .  

5.2.3 The Stagnation Point End Condition 

The curva tures  f o r  po in ts  on a body sur face  are computed from t h e  input  
geametry da t a ,  as w i l l  be discussed i n  another sec t ion .  The curvature  a t  a 
t r a i l i n g  edge point  is  taken t o  be the  same a$ the body sur face  curva ture ;  
although, i n  r e a l i t y ,  there may be a weak s i n g u l a r i t y  a t  t h i s  point  because 
of a f i n i t e  yedge angle. J u s t  downstream of t h e  t r a i l i n g  edge, i f  t h e  flow 
i s  subsonic, t h e  curva tures  are computed by  t he  beam formulas where, a t  t h e  
t r a i l i n g  edge po in t ,  t h e  t h i r d  opt ion (F = 0 )  is  used for t h e  upstream end 
condi t ion.  

The leading edge is  handled i n  a s l i g h t l y  more camplex way. 
requirement i n  the  S I C  Program t h a t  the  leading edge be rounded and that  a 
complete numerical desc r ip t ion  of t h e  leading edge shape be supplied.  
t h e  s tagnat ion  point ,  then,  t h e  s t reamlines  are required to  t u r n  a 90' 
corner.  Two coincident  s tagnat ion  s t reamlines  are employed. One t u r n s  up 
and goes over t h e  body; t he  o the r  t u r n s  down and goes below. The loca t ion  
of the s tagnat ion  point is  found i t e r a t i v e l y .  

It is  a 

A t  

A s  shown on Figure 24, t h e  
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point  i s  moved along t h e  contour so t h a t  t h e  i n t e r s e c t i o n  angle  w i t h  the  body 
sur face  is 90'. The s t reamline angle  a t  the s tagnat ion  point  i s  found by 
u t i l i z i n g  t h e  s p l i n e  f i t  w i t h  the  t h i r d  opt ion (F = 1) for  the downstream 
end condi t ion.  

5.2.4 Backward Curve F i t s  f o r  Supersonic Regions 

When the flow a t  a p a r t i c u l a r  gr id  point is  m~personic ,  the "complete" 
beam f i t  (or  c e n t r a l  d i f fe rence)  formula i s  not appropr ia te  for  the evalua- 
t i o n  of curvature .  To be cons i s t en t  w i t h  the  physical  character of super- 
sonic  f low,  the curvature  a t  point  i cannot be influenced by any poin ts  down- 
stream of tha t  po in t ,  such as the i+l or i+2 points.  

Therefore,  t o  eva lua te  curvature  a t  supersonic poin ts ,  the "beam" is 
f i t t e d  t o  only 3 or 4 po in t s  t o  ob ta in  a curvature  a t  the l a s t  of these 
points.  The beam-fit is moved along (by dropping a point a t  t h e  upstream 
end and picking one up downstream) t o  c a l c u l a t e  t h e  curvature  a t  sequent ia l  
po in t s  on the  s t reamline.  Used i n  t h i s  way the  beam formulas e s s e n t i a l l y  
represent  either a parabol ic  (3-point) or  a cubic  (&point)  curve f i t .  The 
cubic f i t  is  obtained when F a t  both ends, f o r  the 4-point f i t ,  i s  set t o  
unity.  Actual ly ,  more favorable  agreement w i t h  theory ( i n  the case  of a 
two-dimensional Prandtl-Meyer turn)  i s  obtained when F is set t o  about 0.75, 
and these a r e  the  standard values  of F present  i n  t h e  S!W program f o r  t h e  
&point  formula. F is  automatical ly  set t o  zero when the  *point opt ion is 
selected . 

For pure supersonic flows, t h e  &poin t  curve f i t  (which is  second 
order  accurate)  gives  much better r e s u l t s  than does the 3-point (first 
order accura te )  formula. But f o r  mixed flows, i t  is found t h a t  the  &poin t  
formula genera l ly  leads t o  divergence and, t he re fo re ,  t he  3-point formula 
i s  always used f o r  t ransonic  cases. 

5.2.5 The Evaluation of Curvature V e r y  Close to a Sonic L i n e  

I n  t h e  STC method, t he  curvature  must be known a t  t h e  sonic  (or near 
sonic)  po in t s  j u s t  as a t  any o the r  po in t  i n  the f i e l d  fo r  use  i n  the cross- 
stream momentum equat ion,  Equation 7 .  This  i s  i n  c o n t r a s t  t o  the ve loc i ty  
p o t e n t i a l  method of Murman and Cole where the second streamwiss d e r i v a t i v e  
of r$ i s  i n s i g n i f i c a n t  because the  c o e f f i c i e n t  (1-M2) i s  zero.  
t he  following procedure is used t o  eva lua te  t h e  s t reaml ine  curvature  a t  
poin ts  c l o s e  t o  a sonic  l i n e .  

Therefore, 

The point  a t  which the  sonic  l i n e  c ros ses  each orthogonal is i d e n t i f i e d  
by r e f e r r i n g  t o  the value of ve loc i ty  (or, i n  r e a l i t y ,  the  c o e f f i c i e n t  B) 
from t h e  previous i t e r a t i o n .  Then, for  some d i s t ance  above and below t h e  
sonic  l i n e ,  t he  curva tures  a r e  taken t o  vary l i n e a r l y  between the  values  cal-  
cu la ted  according t o  Sec t ions  5.2.1 t o  5.2.4. This  i s  i l l u s t r a t e d  i n  
Figure 25. The ex ten t  of t h i s  l i n e a r l y  assumed v a r i a t i o n  i s  con t ro l l ed  
by  an input  va r i ab le  (TSIC).  
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5.2.6 Spec ia l  I n t e r i o r  Po in t s  a t  Orthogonal Ends 

A s  mentioned earlier, it is  not  required t h a t  a newly in se r t ed  orthog- 
onal  l i n e  span the f i e l d  i f  the numerical r e so lu t ion  near the boundaries 
is already s a t i s f a c t o r y .  
wi th in  t h e  f i e l d  on a s t reamline.  These are considered spec ia l  po in ts  and 
they are not used i n  t h e  curve f i t s  described i n  Sec t ions  5.2.1 and 5.2.4. 
Ins tead ,  after the  curve f i t  is  obtained,  the  pos i t ion ,  angle ,  and curvature  
a t  t h e  spec ia l  points  are in te rpola ted .  

I n  t h i s  case the orthogonal l i n e  w i l l  terminate  

Another place where t h i s  procedure is used is i n  the  pos i t ion ing  of 
poin ts  adjacent  t o  a s tagnat ion  poin t ,  as indicated by the  sol id  circle i n  
Figure 24. In  t h i s  case the  in t e rpo la t ion  procedure rep laces  t h e  integra- 
t i o n  of t he  momentum and con t inu i ty  equat ions i n  t h e  i n t e r v a l  containing 
the  s i n g u l a r i t y  a t  t h e  s tagnat ion  point. 

5.3 POSITIONING THE ORTHOGONALS 

The cross-stream momentum and con t inu i ty  equations a r e  w r i t t e n  i n  a 
d i r e c t i o n  normal t o  the s t reamlines .  Hence, before these  equat ions are a p  
p l ied ,  it i s  necessary t o  move t h e  g r id  poin ts  along t h e  s t reamlines  t o  ob- 
t a i n  or thogonal i ty .  
26). 
streamline.  Along t h i s  l i n e  the  spacing between orthogonals i s  chosen pro- 
por t iona l  t o  AS1. To correct t h e  nonorthogonality, the  po in t s  on each orthog- 
onal  a r e  f i r s t  f i t t e d  w i t h  a s p l i n e  (using the equations of Section 5.2 and 
the  end condi t ion  F = 0 )  t o  ob ta in  the angles @2. The angle  devia t ion  from 
t h e  streamline normals is then  in tegra ted  w i t h  respec t  t o  t h e  cross-stream 
d i s t ance  n, from t h e  c o n t r o l  s t reamline t o  the  point i n  quest ion,  t o  obta in  
t h e  r e l a t i v e  movement Ds. 
u t i l i z i n g  the  s t reaml ine  curve- f i t  equations. The coordinates ,  @1 angles ,  
curva tures ,  and cumulative s-dis tances  a r e  modified as appropriate .  The 
cons tan t  of i n t e g r a t i o n ,  ADS, i n  the  i n t e g r a l  for  DS pos i t ions  the orthog- 
ona l  on a control s t reaml ine  so that  a reference pos i t ion  is  maintained. 

Th i s  is  e a s i l y  accomplished as follows (refer t o  Figure 
t l  In  each region a boundary o r  d iv id ing  s t reamline is  chosen as a control"  

The po in t s  are then moved t o  the new pos i t i ons  by  

5.4 FAR-FIELD SOLUTION 

The boundary condi t ion  on the  ex te rna l  flow is t h a t  t h e  ve loc i ty  approach 
the  undisturbed ve loc i ty ,  Vm, and the  flow angular i ty  approach zero as t h e  
spac ia l  coordinates approach i n f i n i t y .  To economically meet t h i s  condi t ion ,  
the f ie ld  is  divided i n t o  an inner" and an "outer" region,  i l l u s t r a t e d  i n  
Figure 27. The inner region i s  the  reg ion  near t h e  body where flow d i s t u r  
bances are l a r g e  and/or t h e  t y p i c a l  nonl inear  t ransonic  e f f e c t s  are encoun- 
tered. Flow p rope r t i e s  i n  t h i s  inner  region a r e  ca l cu la t ed  by t h e  streamtube 
curva ture  technique which uses  the  f u l l  nonlinear equat ions of motion. 

I1 

The o u t e r  region i s  the  reg ion  extending from the ou t s ide  edge of the  
S'E i n t e g r a t i o n  domain t o  i n f i n i t y .  I n  t h i s  region, an asymptotic form of 
the equat ions of motion i s  applied.  These asymptotic equat ions are solved 
ana ly t i ca l ly .  On the i n t e r f a c e  boundary between the  two reg ions ,  it is r e  
quired t h a t  t he  v e l o c i t i e s ,  as  ca l cu la t ed  i n  t h e  two separa te  regions,  must 
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match i n  both magnitude and d i r ec t ion .  Consequently both t h e  ve loc i ty  on the  
boundary and t h e  shape of t h e  boundary are matched. This manner of applying 
the  boundary condi t ion is  analogous t o  the  f ami l i a r  inner-outer  expansion 
method of asymptotic theory ( r e f .  6 ) .  

To achieve a matched so lu t ion  on the  i n t e r f a c e  boundary, t h e r e  a r e  
r e a l l y  two quest ions t o  be answered. F i r s t ,  f o r  a p a r t i c u l a r  i n t e r f a c e  
s t reamline shape, what i s  the  ve loc i ty  d i s t r ibu t ion?  The determination of 
t h i s  ve loc i ty  d i s t r i b u t i o n  i s  the  f i f t h  s t e p  i n  t h e  ca l cu la t ion  procedure 
out l ined  i n  Sect ion 3.0, and these v e l o c i t i e s  a r e  used a s  boundary condi t ions  
on the  momentum equation i n  the s i x t h  s t ep .  The second quest ion is: i f  t h e  
i n t e r f a c e  s t reamline pos i t ion  i s  a l t e r e d  s l i g h t l y  (by moving the  poin ts  out- 
ward o r  inward), what w i l l  be t h e  change i n  ve loc i ty  a t  any given point? 
T h i s  is required i n  the matr ix  formulation of the  s t reamline co r rec t ion  equa- 

l t i o n ,  Sec t ion  5.6.4. I n  t h i s  s ec t ion  only the  f i r s t  quest ion i s  considered. 

In  the  present  procedure, t h e  f a r - f i e ld  region i s  approximated by a 
l i n e a r  d i f f e r e n t i a l  equation, t h e  so lu t ion  t o  which can be computed v e r y  
rap id ly .  The l i n e a r  formulation, however, a l s o  r equ i r e s  t h a t  the  d i s tu r -  
bance of f32 be small  i n  the outer  region compared t o  t h e  free-stream value,  
BE, where p2 = (1-M2). Thus, t h e  fax-field boundary must be s u f f i c i e n t l y  
f a r  from the  body t o  s a t i s f y  t h i s  condition. (Al te rna te  f a r - f i e l d  so lu t ion  
procedures which allow a r e l a t i v e l y  l a rge  p2 disturbance could,  perhaps, be 
employed a s  mentioned a t  t h e  end of t h i s  sect ion.)  

The c a l c u l a t i o n  method i s  a s impl i f ied  vers ion of t he  Douglas-Neumann 
procedure which was developed by Smith and co-workers ( r e f s .  7 and 8) a t  t h e  
Douglas A i r c r a f t  Company. Two separa te  vers ions of t he  a n a l y s i s  have been 
formulated, one f o r  axisymmetric flow, the  o the r  f o r  two-dimensional flow. 
Both of t hese  analyses  a r e  similar i n  na ture ,  but t he  mathematics of the  two- 
dimensional so lu t ion  i s  much simpler. I n  f a c t ,  t h e  two-dimensional ana lys i s  
degenerates  t o  a s i m p l e  t h i n  a i r f o i l  ca lcu la t ion .  Because it  i s  s i m p l e r ,  t h e  
two-dimensional ana lys i s  w i l l  be presented f i r s t .  

I 

Since the  "body" of i n t e r e s t  i n  the  ou te r  region r e a l l y  represents  the 
ou te r  s t reamline of t h e  S E  numerical i n t eg ra t ion  domain, it is  reasonable 
t o  expect t h a t  i ts 
face  s t reamline from i ts  undisturbed s t a t e )  w i l l  be small. Fur ther ,  a l l  
angles on t h e  "body" sur face  (i.e., flow angles  on t h e  i n t e r f a c e  s t reamline)  
are a l s o  expected t o  be small. The assumption of small de f l ec t ions  and 
angles  and t h e  assumption of small t ransonic  e f f e c t s  allows u s  t o  use the  
c l a s s i c a l  small per turba t ion  equations of subsonic flow theory t o  descr ibe  
the  outer  flow f i e l d .  Thus, t h e  problem of f ind ing  the  ve loc i ty  on a sur face  
which is only s l i g h t l y  perturbed from a s t r a i g h t  l i n e  is j u s t  t h e  t h i n  a i r -  
f o i l  problem. 

11 thickness"  (i.e.,  t h e  v e r t i c a l  displacement of t h e  in te r -  

A s  discussed i n  any aerodynamics t e x t  ( f o r  example, see re f .  9, Chapter 
71, t he  ve loc i ty  p o t e n t i a l  f o r  t h e  flow past  a t h i n  a i r f o i l  i s  governed by 
the  equation: 
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which can be converted t o  Laplace's  equation, p2 '# = 0, by  a Prandtl-Glauert  
transformation. The so lu t ion ,  f o r  t he  t h i n  a i r f o i l  approximation, is obtained 
by pu t t ing  a series of mass sources on the  o r i g i n a l  unperturbed s t r a i g h t  l i n e  
and matching the  ve loc i ty  tangency condi t ion there rather than on t h e  ac tua l  
perturbed boundary which descr ibes  the  body shape. W e  can then w r i t e  t he  
s o l u t i o n  f o r  t h e  ve loc i ty  po ten t i a l ,  @, and t h e  per turba t ion  v e l o c i t i e s  u - k  
and v as: 

where 5 ,  T l  is  t h e  loca t ion  of the  source point and w h e r e  x, y is  t h e  f i e l d  
point a t  which t h e  p o t e n t i a l  (or ve loc i ty )  is being ca lcu la ted .  

In  the  ca8e of t h e  f a r  f i e l d ,  a l l  mass sources are placed on the  s t r a i g h t  
l i n e  which corresponds t o  the  undisturbed i n t e r f a c e  boundary. W e  a r e  in- 
terested i n  f ind ing  the ve loc i ty  on t h i s  same l i n e .  Thus a l l  c a l c u l a t i o n s  are 
made on the  l i n e  q = ys.  (The subscr ip t ,  8 ,  r e f e r s  t o  the  loca t ion  of t h e  
undisturbed interface streamline.) The v e l o c i t y  d i s t r i b u t i o n  on t he  body 
can be found by eva lua t ing  Equation 30 a t  y = ys, and q = ys. Thus, w e  have: 

W e  now subdivide the i n t e r f a c e  s t reamline i n t o  a series of N equal ly  spaced 
in t e rva l s .  Thus the i n t e g r a l  i n  Equation 32 becomes t h e  summation of N 
i n t eg ra l s :  

Performing t h e  ind ica ted  in t eg ra t ion  and wr i t i ng  t h e  f i e l d  point  x as the  
subscr ipted point  xi, w e  have: 
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The sum of i n t e g r a l s  i n  Equation 33a includes one i n t e g r a l  i n  which t h e  
integrand is  s ingu la r ,  namely t h a t  i n t e r v a l  i n  which xi lies. 
the  Cauchy p r inc ipa l  value of t h e  i n t e g r a l  i n  t h i s  i n t e r v a l ,  it can be shown 
t h a t  the  s ingu la r  i n t e r v a l ' s  cont r ibu t ion  t o  t he  ve loc i ty  is  zero. For t h i s  
reason, t h e  summation i n  Equation 33b ind ica t e s  that the  i n t e r v a l  j=i is  t o  
be discarded when c a l c u l a t i n g  t h e  ve loc i ty .  

By consider ing 

I A shorthand no ta t ion  f o r  some of t h e  terms i n  Equation 33b is  now in t ro-  
duced. L e t :  

so that Equation 33b becomes: 

ui - u, = X i J  aj (35) 

where u i  and oj  represent  u(x i ,ys )  and a ( x j ) ,  respec t ive ly .  

Determination of t he  source dens i ty  is simple i n  the two-dimensional 
case.  The dens i ty  i s  given by: 

where v is t h e  v e r t i c a l  component of ve loc i ty  on the  body. 
can be obtained from Equation 31 by a c a r e f u l  cons idera t ion  of the l imi t ing  
process a s  y approaches the loca t ion  of the source,  q. 
can be found i n  standard aerodynamic t e x t s .  By using the small per turba t ion  
assumptions: 

T h i s  r e l a t i o n s h i p  

Again, the  der iva t ion  

v = P ( s )  S (37) 

F ina l ly ,  for  reasons which w i l l  become apparent i n  the  axisymmetric ana lys i s ,  
Equations 36 and 37 are combined t o  de f ine  t h e  matr ix  Y i j  such tha t :  I 

- Y i j  oj 
i , s  

(38) 

I where Y i j  is  a diagonal matrix.  
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W e  now combine Equations 35 and 38 t o  ob ta in  a direct  equation f o r  t h e  
u-ve loc  i t y  component : 

-1 3 
ui - u, = 'ij ['jk (dx )  1 

s ,k  

or : 

where, 

(40) 
-1 

z i j  = 'ik 'kj 

-1 
O f  course i n  t he  t h i n  a i r f o i l  approximation where Y i j  
diagonal mat r ix ,  Z i j  i s  i d e n t i c a l  t o  X i j  except f o r  a cons tan t .  

( l i k e  Yi j )  is  a 

I t  i s  i n t e r e s t i n g  t o  note  t h a t  i f  the  sources were placed on t h e  body 
sur face  in s t ead  of on t h e  l i n e  y = ys, t h e  matr ix  Y i j  would be a completely 
dense ma t r ix  so t h a t  f i nd ing  i ts  inverse  would not  be t r i v i a l .  However, for 
v e r y  t h i n  bodies,  t he  off-diagonal terms are very small; i .e.,  the  ma t r ix  
i s  s t rong ly  d iagonal ly  dominant; and, i n  t h e  l i m i t  of a very t h i n  body, 
Y i j  w i l l  approach a diagonal matrix.  
matr ix  Y i j  w i l l  a l s o  be a completely dense matrix.) 
t r i b u t i o n  on the body su r face ,  makes the  two-dimensional a n a l y s i s  i d e n t i c a l  
w i t h  t h e  Douglas-Neumann a n a l y s i s  (ref. 7 ) .  

( I n  the  axisymmetric a n a l y s i s ,  t h e  
P lac ing  t h e  source d is -  

During t h e  i t e r a c t i o n  procedure f o r  the  Streamtube Curvature so lu t ion ,  
t he  matr ix  Z i j  i s  ca l cu la t ed  only once. 
t he  interface s t reaml ine)  changes shape, the m a t r i x  Z remains unaffected.  
This  i s  because t h e  t h i n  a i r f o i l  approximation allows sources  and the  tan- 
gency condi t ion  t o  be placed on the  s t r a i g h t  l i n e  y = ys, not  on the  per- 
turbed i n t e r f a c e  s t reaml ine .  The e n t i r e  e f f e c t  of t h e  body geometry e n t e r s  
through the  vec tor ,  (dy/dxIsj, which r ep resen t s  the  slopes of the  body 
surf ace. 

Thus, even though t h e  "body" (i.e., 
i j  

Before t h e  c a l c u l a t i o n  procedure can be implemented, t h e  upstream and 
downstream l i m i t s  of t h e  i n t e g r a t i o n  must be spec i f i ed .  W e  have chosen t o  
place t h e  leading" and " t r a i l i n g "  edges of t h e  i n t e r f a c e  s t reaml ine  upstream 
and downstream of t he  numerical ( inner )  i n t e g r a t i o n  boundaries, respec t ive ly .  
Th i s  spanwise lengthening of t he  o u t e r  domain over the  inne r  domain i s  done 
t o  ensure t h a t  the v e l o c i t i e s  which are ca l cu la t ed  by  the o u t e r  a n a l y t i c a l  
s o l u t i o n  are reasonable and well-behaved a t  t h e  streamwise e x t r e m i t i e s  of t h e  
S W  (numerical) i n t e g r a t i o n  domain. To allow the  streamwise ex tens ion  of t h e  
i n t e r f a c e  s t reaml ine ,  a quadra t ic  add i t ion  i s  f i t t e d  t o  both ends of t h e  STC- 
ca lcu la t ed  i n t e r f a c e  streamline.  These quadra t i c s  are def ined  by r equ i r ing  
t h a t  they have both zero  d e f l e c t i o n  and zero  s lope a t  their o u t e r  ends, and 

I t  
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t h a t  they j o i n  cont inous ly  (but  allowing d i s c o n t i n u i t i e s  i n  s lope)  w i t h  t h e  
ends of t h e  S'K streamline.  

The a n a l y s i s  of t h e  axisymmetric vers ion  of t h e  a n a l y t i c  ou te r  region 
so lu t ion  i s  i d e n t i c a l  i n  philosophy t o  t h a t  of t he  two-dimensional so lu t ion .  
The generation of t h e  matrices X i j ,  Y . . ,  and Zlj, however, i s  more compli- 1J cated.  The d e t a i l s  of t h e  axisymmetric a n a l y s i s  have been given by Smith and 
P ie rce  (ref. 7 ) .  Consequently, only the  r e s u l t s  w i l l  be included here. 

In  axisymmetric flow, the  i n t e r f a c e  s t reaml ine  cannot be thought of as  a 
t h i n  a i r f o i l ,  and it  c e r t a i n l y  cannot be considered t o  be a s lender  body. 
Ins tead ,  t h e  i n t e r f a c e  s t reaml ine  appears as  an outward per turba t ion  on what 
would otherwise be a r i g h t  c i r c u l a r  cy l inder .  A s  i n  two-dimensional flow, w e  
assume t h a t  a series of mass sources can be placed on the  s t r a i g h t  sur face  of 
the  cy l inde r  i t s e l f  rather than  exac t ly  on t h e  i n t e r f a c e  streamlines.  These 
sources must not  be simple mass sources ,  but rather must be r ing"  sources. 
The p o t e n t i a l  f i e l d  which i s  induced by a r i n g  source of r a d i u s  a ,  a t  t h e  
a x i a l  l oca t ion  is: 

11 

By plac ing  a continuous d i s t r i b u t i o n  of these sources on t h e  cy l inde r  r = a ,  
and then  breaking it  
dimensional case, w e  
Y i j  (see r e f s .  7 and 

j+ 4 

I,- f X i j  = -4a 

x i j  = 0 

and : 

j+ f 
Ij-1 Y i j  = -2 

Y i j  = -2n + 2D 

where : 

up i n t o  a number of small segments as  i n  t h e  two- 
ob ta in  t h e  following equations f o r  t he  matrices X i j ,  
8 )  : 

E(m)  df 

D D3 
8 8  8 

In  - - - (1 + In  E )  

( i= j )  

and where K ( m )  and E(m) are the complete e l l i p t i c  i n t e g r a l s  of t h e  f i r s t  and 
second kind,  respec t ive ly .  
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A s  i n  t h e  two-dimensional theory,  w e  now c a l c u l a t e  t he  u component of 
t h e  ve loc i ty  i n  the  ou te r  region from Equation 39b: 

u i  - u, = Zij(& 

where, as before:  

-1 
'ij = 'ik 'kj 

( repeat  of Equation 39b) 

(44) 

No e i n  t h i s  axisymmetric case ,  t h a t  YkJ is not a diagonal mat r ix ,  and t h a t  
YkJ must be found from a numerical mat r ix  inversion algorithm. However, t he  
only geometrical  terms which e n t e r  the Y i j  matr ix  are the  undisturbed rad ius  
of the  ou te r  s t reamline and the  t o t a l  a x i a l  length of the  ou te r  region. 
Again, a s  i n  t h e  two-dimensional theory ,  t h e  e f f e c t s  of t h e  displacement of 
t he  i n t e r f a c e  s t reamline e n t e r  only through the  vec tors  (dy/dxIsj. T h i s  is 
a direct  r e s u l t  of placing the  r ing  sources a t  t he  cons tan t  r a d i u s  a ,  r a t h e r  
than exac t ly  on the  i n t e r f a c e  s t reamline itself. 
matr ix  can again be ca l cu la t ed  once for an e n t i r e  STC i t e r a t i o n  h i s to ry ,  
desp i t e  t h e  fact  t h a t  t h e  shape of t h e  i n t e r f a c e  s t reamline is  changing. 

-5 

Consequently, t h e  Z i j  

I t  is he lpfu l  t o  compare the  approximations i n  t h e  above formulation t o  
those of Murman and Cole (refs. 1 and 10). Their  formulation is s imi l a r  t o  
t h e  one described above, except t h a t  t h e i r  so lu t ion  domain includes both t h e  
near and f a r  f i e l d s .  They include the  nonl inear  term by means of a series of 
t ransonic  sources  d i s t r i b u t e d  throughout the  numerical i n t eg ra t ion  domain. 
But i n  the  region which corresponds t o  the  fa r  f i e l d ,  t he  t ransonic  source 
terms a r e  neglected.  ( I n  f a c t ,  they cannot be included because the  infor- 
mation required to compute the d i s t r i b u t e d  source s t r eng th  is not ava i lab le . )  
Therefore, t h e i r  method, l i k e  t h e  method presented here ,  neglec ts  the  non- 
l i n e a r  effects i n  the  ou te r  region. 

Despi te  these j u s t i f i c a t i o n s ,  some inc lus ion  of t he  nonl inear  e f f e c t s  
i n  t h e  f a r f i e l d  so lu t ion  would be advantageous. The l o c a l  l i n e a r i z a t i o n  
method of S p r i e t e r  ( r e f s .  11 and 12) would allow these e f f e c t s  t o  be in- 
cluded i n  an approximate manner, and could be included i n  f u t u r e  program 
developnent a c t i v i t y .  

Typical r e s u l t s  of t h e  f a r f i e l d  matched so lu t ion  a r e  now i l l u s t r a t e d .  
A s  an t i c ipa t ed ,  t h e  proximity e f f e c t  of t h e  numeric f i e l d  ou te r  boundary 
is  small when the  ana ly t i c  f a r f i e l d  so lu t ion  i s  employed. Figure 28 i l l u s -  
t r a t e s  t h e  v a r i a t i o n  of peak Mach number on a body of revolu t ion  as t h e  
pos i t ion  of t he  ou te r  boundary is changed. Notice t h a t ,  for t h i s  test case ,  
t he  induced Mach number error i s  less than 0.01, even when the  ou te r  boundary 
i s  reduced t o  twice t h e  body r ad ius  (Router = 1.0). 

A l s o  i l l u s t r a t e d  i n  Figure 28 are the  so lu t ions  obtained by u t i l i z i n g  
hard wall  and constant  pressure boundary condi t ions as a func t ion  of Router 
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By comparison, the  u t i l i z a t i o n  of the  f a r - f i e l d  so lu t ion  allows a s i g n i f i c a n t  
reduct ion of boundary r ad ius ,  f o r  t he  same accuracy, y ie ld ing  an e f f i c i e n t  
computational procedure. 

5.5 INTEGRATION OF THE CONTINUITY AND MOMENTUM EQUATIONS 

In  t h i s  s ec t ion  t h e  numerical procedure f o r  i n t eg ra t ing  the  f u l l  non- 
i s en t rop ic  and va r i ab le  energy form of the equat ions of motion is  developed. 
Only a port ion of t h i s  gene ra l i t y  i s  required,  s ince  ex te rna l  flows a r e  
i soenerge t ic  and only s l i g h t  entropy v a r i a t i o n s  a r i s e  downstream of shock 
waves. For completeness, however, t h e  formulation f o r  general  flow p r o p e p  
t i es  is  re ta ined .  

The "heart" of t h e  S I C  method i s  t h e  in t eg ra t ion  of t h e  momentum and 
cont inui ty  equat ions,  which a r e  repeated here: 

Momentum : 

C ont  inu i t y : 

aw a A  = -  
PV 

Equation 2b i s  t h e  basic  Crocco form of the  momentum equation containing t h e  
var iab les  H and S (enthalpy and entropy).  
by t o t a l  temperature and t o t a l  pressure f o r  g rea t e r  engineering convenience. 
I f  i t  is a l s o  assumed tha t  the  specific heat is cons tan t ,  then the  following 
equation is  equivalent  t o  Equation 2b: 

These va r i ab le s  may be replaced 

1 a(v2) 2 1 v2 aTT + - - = - c v  + - - -  
2 an 2 T~ an 

The above momentum equation 
Equation 45 as :  

(45 1 

is  in tegra ted  by par t s .  F i r s t ,  w e  rewrite 

- 1 d V 2  = 2 V 2  (-2Cdn + dlnTT + R T - dPT 
2 2 g p T  

The formula f o r  i n t eg ra t ing  by p a r t s  is: 

V 

U 
dv = - - du + d(uv) 

By comparing Equation 47 w i t h  Equation 46, i t  follows t h a t :  

(47) 
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and, 

1 dPT - d(uv) = R T- 
pT e u  

Since t h e  t o t a l  temperature and streamline curva ture  are assumed known, 
Equation 48b can be in t eg ra t ed  from the  f i r s t  t o  t h e  k t h  s t reaml ine  t o  
obta in :  k 

(u1 = 1) (49) 

I 
, Equation 48c is  then  in t eg ra t ed  t o  y i e l d  an  expression f o r  the  product 

of u and v e l o c i t y  squared. 

dPT k 
1 , v 2 - 1  v2 = u R T -  
2 k k 2 Uk+l  k + l  Ik+, 'T 

(50) 

Equation 50 rep resen t s  t h e  i n t e g r a t i o n  ac ross  one streamtube bounded 
by streamlibes k and k+l .  
toward t h e  c e n t e r  because, f requent ly ,  t h e  v e l o c i t y  i s  known on t h e  ou t s ide  
boundary. The f i n i t e - d i f f e r e n c e  form of Equation 50, employed i n  t h e  com- 
pu te r  program, is: 

The i n t e g r a t i o n  i s  performed from t h e  ou t s ide  

- P  (51) 
2 Tk Tk+ 1 

UkVk - uk+l v2 k+l  =- (- pTk +-) '%+l (-k '&+l) 

Note t h a t  t h i s  expression i s  e x p l i c i t  when no t o t a l  p ressure  grad ien t  e x i s t s ;  
otherwise t h e  expression (Equation 51) is  i m p l i c i t  because t h e  s t a t i c  tempera- 
t u r e  which appears on t h e  right-hand s i d e  is  a d i r e c t  func t ion  of ve loc i ty .  

(52) v: T = T  - -  
P 

k Tk 2C 

However, t he  i m p l i c i t  na tu re  i s  very weak up t o  t r anson ic  speeds, and a 
simple successive approximation procedure i s  u t i l i z e d  t o  update t h e  right-hand 
s i d e  u n t i l  t h e  computed f r a c t i o n a l  v e l o c i t y  change (on each streamline) i s  
less than 1 X lo+. 
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The numerical i n t eg ra t ion  of the  momentum equation, then ,  is  a two-step 
process: f i r s t  the in t eg ra t ion  of Equation 49 I s  performed followed by t h e  
i n t e g r a t i o n  of Equation 50. I n  Equation 49, t h e  i n t e g r a l  of curvature  is  
evaluated by f i t t i n g  a second-order polynominal i n  each in t e rva l .  
second d e r i v a t i v e  of t h a t  polynominal is established by a least square f i t  
t o  t h e  t w o  nearby points.)  Implied i n  t h e  in t eg ra t ion  is  t h e  f a c t  t h a t  t o t a l  
temperature and t o t a l  pressure are known as a funct ion of the  s t reamline index 
k and, hence, as a funct ion of the  cross-stream dis tance  no. 
con t r ad ic t ion  t o  the streamwise momentum and energy equat ions,  Equations 3 and 
4 of Sect ion 2.0, s ince  t o t a l  p roper t ies  are correctly related only t o  t h e  cumu- 
l a t i v e  flow rate (Y = W). However, t h i s  s l i g h t  e r r o r  i s  automatical ly  corrected 
i n  the later s t ages  of t h e  i t e r a t i o n  when the  assumed streamline pos i t ions  a r e  
e f f e c t i v e l y  coincident  w i t h  the  t r u e  s t reamlines .  

(The 

T h i s  is  i n  s l i g h t  

A s  noted above, t h e  in t eg ra t ion  starts from t h e  outer  boundary and pro- 
ceeds inward. For ex te rna l  f l o w s ,  the ve loc i ty  on the ou te r  boundary i s  ob- 
ta ined  from the  f a r - f i e l d  equations of Sect ion 5.4. For i n t e r n a l  channels,  
t h i s  o u t e r  boundary ve loc i ty  is  found i t e r a t i v e l y  a s  w i l l  be discussed below. 
Veloci ty  changes across  s l i p  l i n e s  are obtained by Equations 8a,  8b, and 8c 
a s  discussed previously.  

Following t h e  momentum 
by t h e  algorithm: 

equation, t h e  con t inu i ty  equation i s  in tegra ted  

The average value of mass flow per un i t  a rea ,  i n  t he  denominator of Equation 
53a, may be approximated t w o  ways: 

If t h e  v a r i a t i o n  of ( p V )  between s t reamlines  i s  small ,  then t h e  two expres- 
s ions  give s imi l a r  r e s u l t s .  Although Equation 53b i s  somewhat f a s t e r  t o  
compute, Equation 53c has been found more reliable f o r  some s p e c i a l  cases .  
Consequently, an approximation t o  Equation 53c i s  employed i n  the  computer 
code. 

If the  cumulative cross-strew areas  are being computed f o r  an i n t e r n a l  
s t a t i o n ,  it is  required t h a t  t h e  l a s t  a rea ,  AN, equal the  geometric a rea  of 
t h e  passage a t  t h a t  loca t ion .  To accomplish t h i s ,  t h e  value of VN used a s  an 
i n i t i a l  condi t ion  i n  t h e  momentum in t eg ra t ion  i s  var ied .  Figure 29 shows a 
typ ica l  v a r i a t i o n  of Area, AN, w i t h  ve loc i ty ,  VN. Obviously, there are two 
so lu t ions  -- one for  the  subsonic branch and another f o r  the  supersonic 
branch. Although the  choice of branch may be con t ro l l ed  by user  input ,  the  
subsonic branch so lu t ion  i s  always employed w i t h  an i n l e t / n a c e l l e  configurat ion.  
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Figure 29. Illustration of Method for Choosing Outer Boundary 
Velocity in a Confined Passage. 
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A t h i r d  p o s s i b i l i t y  i s  tha t  t h e  geometric passage areS is  below the  
minimum computed a rea ,  AN. In  t h i s  ca se ,  the flow is  said t o  be choked, 
and the  flow is  adjusted so t h a t  the  minimum ca lcu la ted  a r e a  w i l l  be exac t ly  
equal t o  the  geometric area.  T h i s  log ic  is u t i l i z e d ,  f o r  example, i n  t h e  
th roa t  of t h e  nozzle discharge passage. 

5.5.1 Stagnat ion Poin ts  

If a sharp concave corner  i s  encountered, the flow ve loc i ty  i s  known to  
be zero. Such a s i t u a t i o n  cannot e a s i l y  be handled w i t h  the equat ions a s  
formulated above. Hence, the in t eg ra t ion  of both the  momentum and con t inu i ty  
equations is  omitted i n  t h e  i n t e r v a l  adjacent  t o  t h e  body, and the  first point 
away from the body i s  in te rpola ted  a s  indicated i n  Sect ion 5.2.6. 

To replace the  omitted equations a t  the  leading edge s tagnat ion  poin t ,  
t he  derived condi t ion t h a t  the  s tagnat ion  s t reamline i n t e r s e c t  the  body 
at a 90' angle  i s  u t i l i z e d  a s  discussed i n  Sec t ion  5.2.3. The s t reamline 
angle a t  the  s tagnat ion  point  i s ,  of course,  double valued. Consequently, 
t he  orthogonal l i n e  which passes through the  s tagnat ion  point  is  made per- 
pendicular t o  t h e  average of t h e  two angles ,  a requirement which i s  derived 
from p o t e n t i a l  theory.  

5.5.2 Wakes From Blunt T r a i l i n g  Edges 

Because i t  i s  much e a s i e r  t o  obta in  a v a l i d  numerical so lu t ion  i f  the  

A s  
flow streamlines  a r e  smooth and t h e  curva tures  a r e  not excessive,  a dead 
region i s  allowed t o  e x i s t  behind a t r a i l i n g  edge which has thickness .  
shown i n  Figure 30, t h e  thickness  of the  "dead" region is gradual ly  reduce0 
t o  zero a s  one proceeds downstream. The de r iva t ive ,  db/ds, has a nominal 
value of 0.1. 

To include the  wake displacement e f f e c t ,  the  wake a rea  i s  added t o  t h e  
right-hand side of Equation 53a if a channel boundary s t reaml ine  is crossed. 
I n  this way t h e  cumulative streamtube flow area  includes t h e  wake displace- 
ments. No cor rec t ion  i s  required i n  t h e  momentum equation because pressure 
con t inu i ty  i s  always enforced across  a s l i p  l ine .  

5.6 STREAMLINE CORRECTION EQUATION 

5.6.1 General Formulation 

In  the Sw c a l c u l a t i o n  procedure, we start with an es t imate  of the  
s t reamline pos i t ions ,  t h a t  is ,  a set of zO,rO. 
cyc le ,  zo,ro w i l l  be t h e  coordinates  determined by the f i r s t  i t e r a t i o n ,  and 
so fo r th .  
cumulative width of t he  streamtubes (no) ,  curva ture ,  ve loc i ty ,  and dens i ty  
and, then, a second set of cumulative streamtube widths  (nx). 
i l l u s t r a t e d  i n  the  following l i s t i n g s :  

For t he  second i t e r a t i o n  

These "assumed" s t reamline coordinates  are used t o  compute t h e  

T h i s  is 
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Figure 30. Tra i l ing  Edge1 Region. 
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Given - Operation Compute 

Zo ¶ r o  Streamline Curve F i t t i n g  CO 

=o ro Orthogonal Line Curve F i t t i n g  no 'A0 

Coano Momentum Equation VO 

VO Energy, Entropy, and Eq. of S t a t e  Po 

Po ,vo Continui ty  Equation Ax ,nx 

I f  nx equals  no, t h e  so lu t ion  is  converged. 
the s t reamline pos i t i ons  must be adjusted so t h a t  the d i f f e rence  between nx 
and no is reduced. 
is denoted by 6n, t he  equat ions for  which a r e  formulated i n  t h e  present 
sect ion. 

I f  nx i s  d i f f e r e n t  from no, then 

The amount by which t h e  s t reamlines  a r e  t o  be adjusted 

The c a l c u l a t i o n  formulas t o  t h i s  point have u t i l i z e d  t h e  f u l l  nonlinear 
equat ions of motion. Now w e  employ an approximate set of l i nea r i zed  equat ions 
which w i l l  provide f o r  the computation of 6n; and, through repeated appl i -  
ca t ion ,  br ing  the  discrepancy (nx-no) t o  some small neglec tab le  value. 
f i n a l  coverged flow f i e l d  so lu t ion ,  of course,  w i l l  be t h e  so lu t ion  t o  the  

The 

nonlinear equat ions (i.e.) Equations 

The con t inu i ty  equation 

k+ 1 
'k+l 'k = jk pvdA 3 

f o r  one 

<pvk+i 

1 through 4). 

streamtube may be expressed as: 

[IAk+l - 'k] 

where ,  

A =  5 2 r r r d n  (axisymmetric) 

A = n  (plane) 

< P V > ~ + ~  = average flow per  u n i t  area f o r  t h e  streamtube 
bounded by the  k and k+ l  s t reaml ines  

For two adjacent  streamtubes: 

(54) 

(56) 

63 



A ,  defined as: 

- -  A 2 A f  %+1 - % - % - Ak-l 
A W - Wk+l - Wk 'k - 'k-1 

The previous two equat ions  are subt rac ted  t o  ob ta in  t h e  second d i f f e rence  f o r  

(57) 

A ~ A  - -  
A W -  (58) 

Variables , p ,  and V (i.e.,  those  wit.,out subsc r ip t s )  w i l l  be used i n  t h i s  
s e c t i o n  t o  represent  t h e  "corrected" (or  t r u e  so lu t ion )  values. Thus, 
Equation 58 rep resen t s  the  "correct" so lu t ion .  

An equiva len t  expression can be w r i t t e n  t o  represent  t h e  c o n t i n u i t y  
equation which was used t o  predict  t h e  x-subscripted a r e a s  from t h e  v e l o c i t i e s  
and d e n s i t i e s  associated with t h e  assumed streamlines.  That is: 

A ~ A ~  1 1 

Equations 58 and 59 are now s u b s t i t u t e d  i n t o  t h e  following i d e n t i t y :  

A ~ ( A - A , )  + A ~ A ~  A ~ A  = A~(A,-A,) 
AW AW AW AW 

(59) 

(60) 

t o  obta in :  

The d i f f e rence  between the  "correct" value and the  value assoc ia ted  
with t h e  assumed s t reaml ines  is denoted by 6 ( 1 .  In  p a r t i c u l a r :  

6A = A-A, 

6n = n-no 

6V = v-vo 

6C = c-co 
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Then 

T h i s  

Equation 61a can be rewr i t ten :  

equation represents  a d i f f e rence  co r rec t ion  form of the  
equation. 

To e l imina te  the  pV terms i n  Equation 61b, t h e  momentum 
introduced. In  regions where the  r o t a t i o n a l i t y  is zero,  t h e  
t i o n  is: 

- -Cdn av -- v 

A s  i l l u s t r a t e d  i n  Figure 31, the outer  boundary of the  f i e l d  
the  N t h  s t reaml ine ;  and, it is assumed tha t ,  between the  k t h  

(61b) 

con t inu i ty  

equation i s  
momentum equa- 

(62) 

i s  denoted a s  
s t reamline and 

the  N t h  s t reamline,  there i s  a s l i p  l i n e  w i t h  index j. 
Equation 62 from the  kth t o  t he  j t h  s t reamline and then  from the jth t o  t h e  
N t h  s t reamline y i e l d s :  

In t eg ra t ion  of 

j N N 

k j k 
lnVN - lnVja + lnVjb - lnVk = -j Cdn - $ Cdn = -$ Cdn (63) 

where V 
t h e  assumed curva tures ,  Co, the momentum equation is: 

and Vja a r e  t h e  v e l o c i t i e s  j u s t  below and above t h e  s l i p  1 j b  

N 

k 
lnVoN - 1nV + lnVojb - lnVok = -j Codn o j a  

ine.  For 

(64) 

Equation 63 i s  
lengths  of t h e  

subtracted from Equation 64, and it is assumed tha t  t h e  
orthogonals from k t o  N a r e  not appreciably d i f f e r e n t .  

N 
l n ( L )  - =k (C-Co)dn + I n -  (:('))jb - l n k ) j a  

'0 k vo N 

Since V = Vo + 

In(%) = 

6V w e  use:  

(65) 

a s  a first-order l i n e a r  approximation, and Equation 65 can be w r i t t e n  a s  
follows : 

6V 6V N 6V (dk - (e)N = I, 6Cdn + (TJjb - (K)ja 
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Far-Field Interface  
Boundary, Streamline N 

Cowl Trailing 
Streamline j 

/ Streamline k 

- n n n 
v 

Point Number 1 4 5  6 

I 

Figure 31. Streamline Subscript Notation. 
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N (s) - (F) = I, 6Cdn + Uj 
' 0  k O N  

The parameter aj is introduced t o  s implify the  equat ions,  where: 

(66) 

Equation 66 i s  the  d i f f e rence  co r rec t ion  form of t h e  momentum equation. 
With i t  w e  can approximate the  ve loc i ty  co r rec t ions  f o r  the (k+&) and 
(k-a) streamtubes a s  follows: 

and 

For any given s t reamline t h e  flow is  i sen t rop ic ,  and it  can be shown t h a t :  

$2 d V  
d(+) = - pv 7 

where P2 = $-M2. A discrete l i n e a r  approximation t o  Equation 69 is: 

and : 
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Equation 70a i s  subt rac ted  from Equation 70b, and Equation 68 and 68b a r e  
subs t i t u t ed  i n t o  t h e  r e s u l t .  This  y i e lds  t h e  following expression f o r  t h e  
p V - t e r m s  i n  t h e  con t inu i ty  d i f f e rence  co r rec t ion  equation: 

Rearranging t h e  above, i t  follows t h a t :  

where : 

The term aj ,  which r ep resen t s  the  d i f f e rence  between t h e  ve loc i ty  
co r rec t ion  ac ross  a s t reaml ine ,  i s  now t o  be evaluated. The d e f i n i t i o n  
of a j ,  given by Equation 67, i s  repeated: 

?I ?I The s u b s c r i p t s  b and "a" are used t o  ind ica t e  t h e  value of ve loc i ty  
j u s t  below (b) and above ( a )  t he  s l i p  l i n e  along streamline j; t h e  subscr ip t  
I? I t  o has been dropped: 

The equations which apply a t  t h e  s l i p  l i n e  are: 

1 2  -V = C (T 2 b p Tb - Tsb)  

1 2  -V = C  (T - T  2 a p Ta sa) 
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y-l 

Y-1 

These equations are differentiated to obtain: 

S 
dP 

'Ta 

Y 
- 1 - va dVa = -dTsa = 

c P  

Dividing one by the other: 

Y 

An approximation to Equation 76 is: 

and Equation 73 can now be written as: 

Y-1 

j b 

Just above the slip line, the velocity variation is given by the integral 
I of the momentum equation (see Equation 66): 
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So, becomes: 
y-l 

N 

N 

Y-1 
Y 

Y-1 
where : 

B 3 j  = (.: 'Ta /vi 'Tb -.) TTa TTb j 

Equation 81 is now substituted into Equation 71: 

= -  B16Ck+ B2 6C dn + B2 (1 + B3j) 
-6($)k+& + 6($)k-a 

N 
~ 2 ~ 3 j 4 6 ~  dn 

And this result is substituted into Equation 61b: 

N N 2 * AW (6A) - B16Ck + B 2 k  6C dn + B 2 ( 1  + B3j) + B2B3j( j SC dn 

where, again: 
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'," 'T vf 'T 
B3j =( TT ) ( TT ) 

Jb  Ja 

-1 

Equation 82 i s  the  desired co r rec t ion  equation. The c o e f f i c i e n t s  B1, 
B2, and B3j a r e  a l l  based on flow proper t ies  ca lcu la ted  from the  assumed 
curvatures .  They are known quant i t ies .  The unknown q u a n t i t i e s  are 6 A ,  
6C, and the  ve loc i ty  v a r i a t i o n  on t h e  outer  boundary 6VN. Each of these 
q u a n t i t i e s  must be expressed i n  terms of 6n. 

Remember t ha t  f o r  axisymmetric flow: 

6A = 277 ro 6x1 

and f o r  plane flow: 

6A = 6n 

Thus, f o r  axisymmetric flow, t h e  second d i f f e rence  of 6A is: 

%+l 6nk+l - rk 6nk rk6nk I rk-l  6nk- l )  - A ~ W )  
w - w  AW = 2rr ( wk+l - Wk k k-1 

and for  planar flow: 

The curvature  co r rec t ion  is: 

where s is  the  cu rv i l i nea r  d i s t ance  measured along the  kth s t reamline.  
any selected curve f i t  (or  f i n i t e  d i f f e rence  second-derivative formula), 
t h e  inf luence c o e f f i c i e n t s  can be represented as follows: 

For 
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D2(6nk) = G;6nl ,k + G26n2 , k + G36n3 , k + G46n4 ,k + G56n5 , k 
D s 2  

( 8 5 )  

Here t h e  numbering scheme shown i n  Figure 31 has been used. Generally t h e  
inf luence  c o e f f i c i e n t s ,  G ,  are computed by  assuming a s p l i n e  curve repre- 
sen ta t ion .  I f  the  v e l o c i t y  i s  subsonic, a c e n t r a l  point d i f f e rence  
equation i s  used; and, i f  the  v e l o c i t y  i s  supersonic,  a backward d i f f e r e n c e  
parabola equation i s  used. 

With Equations 84  and 85 s u b s t i t u t e d  i n t o  Equation 82, t h e r e  
r e s u l t s  a set  of equat ions  for t h e  va r i ab le s  6niJk where i i s  an orthogonal 
l i n e  index and k i s  t h e  s t reaml ine  index. These equations,  toge ther  with 
the  boundary condi t ion  equations presented below, form a so lvable  set of 
l i n e a r  simultaneous equations. 

However, t h i s  r e s u l t i n g  equation i s  q u i t e  cumbersome. The i n t e g r a l  
terms which appear i n  Equation 82 lead t o  a dense c o e f f i c i e n t  mat r ix  and 
a computer s o l u t i o n  i s  imprac t ica l .  Therefore, t he  terms i n  Equation 82 
which have c o e f f i c i e n t s  B2 and B3  a r e  neglected,  and t h e  following approxi- 
mate form of t h e  c o r r e c t i o n  equation is u t i l i z e d :  

This  form i s  equiva len t  t o  t h e  d i f f e r e n t i a l  form of t he  c o r r e c t i o n  equation 
derived i n  Appendix A .  For most flow condi t ions  Equation 86a produces 
rap id  convergence. Hence, t h e  omitted terms seem unnecessary f o r  t h e s e  
cases. I n  a few cases t h e  direct  use of Equation 86a does lead t o  diver- 
gence. Th i s  is surmounted by c o r r e c t i n g  t h e  s t reaml ine  pos i t i on  by  an 
amount smaller than  t h e  ca l cu la t ed  6n, o r  by  u t i l i z i n g  an add i t iona l  
f a c t o r  pc i n  Equation 86a where pc i s  a cons tan t  which i s  g r e a t e r  than or 
equal t o  uni ty .  

The e f f e c t  of s e t t i n g  pc t o  a value l a r g e r  than one, say 1.5 or 2.0, i s  
t o  reduce the  curva ture  change between successive i t e r a t e s  and i n  an a p  
proximate manner account for t h e  items which were dropped from Equation 
82. 

5.6.2 Flow I n l e t  and Flow Exi t  Boundaries 

Options are provided f o r  two types of boundary condi t ions  a t  t h e  upstream 
and downstream f i e l d  boundaries. E i the r  t he  flow angle can be spec i f i ed  or 
t h e  curva ture  can be spec i f ied .  The recommended boundary condi t ion  f o r  
general  usage i s  t h a t  the  curva ture  i s  zero (or, equiva len t ly ,  t he  s t a t i c  
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pressure i s  cons tan t ) .  I n  either case ,  Equation 86a i s  appl icable .  However, 
f o r  an upstream boundary, t h e  c o e f f i c i e n t s  GI, G2 and G3 i n  Equation 85 
w i l l  a l l  be zero. That is, the  curvature  co r rec t ion  a t  the c e n t r a l  point 
w i l l  be r e l a t e d  t o  the downstream poin ts  4 and 5 only. If a curvature  
boundary condi t ion i s  employed, then the  curvature  co r rec t ion  necessar i ly  
w i l l  be zero,  Hence, a l l  t he  G c o e f f i c i e n t s  are zero,  and t h e  equation is: 

The so lu t ion  t o  t h i s  equation i s  simply: 

6A = A, - A, ( 8 8 )  

5.6.3 Body Surface Po in t s  

The co r rec t ion  equation f o r  the  g r i d  poin ts  on a body contour i s  
t r i v i a l .  The s t reamlines  a r e  a l ready c o r r e c t l y  posi t ioned so: 

6n = 0 (89) 

f o r  each such point.  

5.6.4 The Far-Field In t e r f ace  Streamline Correct ion Equation 

In  t h i s  s ec t ion  t h e  co r rec t ion  equation f o r  a constant  pressure o r  
f a r - f i e ld  boundary i s  formulated. The nota t ion  is  s imi l a r  t o  tha t  of Sect ion 
5.6.1 and i s  i l l u s t r a t e d  i n  Figure 32. 

Again w e  begin w i t h  the  con t inu i ty  equation. The desired so lu t ion  i s  

But f o r  t h e  ve loc i ty ,  Vo, a ssoc ia ted  w i t h  t h e  "assumed" f a r - f i e l d  boundary, 
t h e  equation is: 

Equation 91 i s  subtracted from Equation 90. 

The i d e n t i t i e s :  
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Far-Fie1 d Interface 
Boundary 

The (N-)f) Streamtube 

> Orthogonals 

Figure 32. Notation for Section 5.6.4. 
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are introduced i n t o  Equation 92 and the  r e s u l t  rearranged to  give: 

[ < P O v o > ~ - i  + '<pv>N-&] (6AN - &"N-1) ("ON - "ON-1) '<Pv>N-& 

Equation 94 r ep resen t s  the cont inui ty  fohn of the co r rec t ion  equation 
f o r  t he  outermost streamtube. 

The ve loc i ty  co r rec t ion  i s  approximated as follows. The average 
ve loc i ty ,  VN-&, f o r  t he  streamtube i s  r e l a t e d  t o  the  boundary ve loc i ty  
by t h e  i d e n t i t y :  

For a constant  pressure boundary 6 VN is zero ;  f o r  t h e  f a r - f i e l d  i n t e r f a c e  
s t reamline:  

%Fi = 0.865 ti) 
i=2,5 

(97) 

Equations 96 and 97 r e l a t e  the  change i n  ve loc i ty  a t  point  (i = 4) t o  t h e  
local o rd ina te  changes of the s t reamline (Sni,N). 
mulation is the con t r ibu t ion  from t h e  movement of the point itself and the  
t w o  upstream and two downstream neighbors. The c o e f f i c i e n t  (0.865/AS) and 
the r e l a t i v e  f a c t o r s  of [O, -1, 2, -1, 01 were determined ( a s  reasonable 
approximations) from numerical so lu t ions .  AS i s  the average l o c a l  spacing 
between poin ts  along the  i n t e r f a c e  s t reamline,  and t h e  c o e f f i c i e n t  ( l - M g l - 4  
corrects f o r  the compress ib i l i ty  o r  Mach number effect. 

Included i n  t h i s  for- 

The second term on the  right-hand side of Equation 95 is evaluated,  
as before, by the  cross-stream momentum equation: 
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Approximately, f o r  t h e  cons tan t  streamtube: 

The d i f f e r e n t i a l  (or small v a r i a t i o n  form ) of Equation 99 is: 

From the  con t inu i ty  equat ion,  the  f i r s t  term i n  the  braces  i s  zero. (For 
the  ou te r  streamtube, the e f f e c t  of a change i n  r ad ius  is neglectable . )  
The dens i ty  v a r i a t i o n  i n  the second term can be r e l a t e d  to  t h e  ve loc i ty  
va r i a t ion :  

Equations 96 and 102 are subs t i t u t ed  i n t o  Equation 95 t o  obtain:  
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The product of curvature  and streamtube thickness  is expected t o  be v e r y  
much less than uni ty ,  therefore QN-4 is approximately equal to  uni ty .  
Also: 

This together  w i t h  Equation 103 subs t i t u t ed  i n t o  Equation 94 gives  the  fo l -  
lowing f o r  t he  i n t e r f a c e  s t reamline co r rec t ion  equation: 

'ON 5 
( p V ) ~ - f  PN-1 - 6AN) - (AoN - AoN-l)( B2p Q ) [&- i22 %F %,N 

N- a 

Equation 106 presmes :  

Also, t o  a reasonable approximation: 

Equation 106 is divided through by (pV), ; and, w i t h  the above approxima- 
t i o n s ,  t h e  f a r f i e l d  boundary co r rec t ion  t quation becomes: 

In the  present  S I C  code, w e  f u r t h e r  approximate QN as uni ty .  
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The average s t reaml ine  curva ture  is  taken t o  be equal  t o  t h e  boundary 
curvature:  

-6c~-4 = -6CN = G 2 6n 2,N + G36n3 ,~  + G46nqYN + G56ngYN + G66n6,N (109) 

where the  G ' s  are the  inf luence  c o e f f i c i e n t s  r e l a t i n g  streamline poin t  
movement t o  the  nega t ive  of curvature.  A l s o ,  i t  follows that :  

f o r  axisymmetric flow, and t h a t :  

6 A ~ - 1  - &AN = 6nN,1 - 6nN ( 1 lob)  

f o r  two-dimensional flow. 

With Equations 109 and 110, t h e  left-hand s i d e  of Equation 107 involves 
only the  s t reaml ine  c o r r e c t i o n  q u a n t i t i e s ,  6n, and the  right-hand side is t h e  
e r r o r  term computed i n  t h e  flow balance sec t ion .  Equation 107 is  used with 
Equations 86, 87 and 89 t o  ob ta in  t h e  mat r ix  equation f o r  6% f o r  M = 1, 
2 .... NM where NM is  t h e  t o t a l  number of g r id  po in t s  i n  t h e  f i e l d .  

5.6.5 The Curvature Inf h e n c e  Coef f i c i en t s  

To complete the formulation of t h e  sys t em of c o r r e c t i o n  equat ions ,  
i t  is necessary t o  re la te  the change i n  curva ture  t o  t h e  movement of t h e  
s t reaml ine .  
are des i red .  

S p e c i f i c a l l y  t he  values of G i n  Equation 85 (repeated below) 

An i l l u s t r a t i o n  of t h e  no ta t ion  is  provided i n  F igure  33. To a very good 
approximation, t h e  curva ture  v a r i a t i o n  i s  equal t o  t h e  v a r i a t i o n  of t h e  
second streamwise d e r i v a t i v e  of 6n. 

(Repeat of Equation 86) 

To eva lua te  t h i s  second d e r i v a t i v e ,  t h e  l i n e a r  s p l i n e  equat ions  are employed, 
maintaining compat ib i l i ty  w i t h  t h e  beam curve f i ts  of Sec t ion  5.2. The 
method for c a l c u l a t i n g  t h e  s p l i n e  inf luence  c o e f f i c i e n t s  is presented i n  
Appendix B. Since only small adjustments from the  given curve are t o  be 
made, t h e  arc length  a long  the  curve,  s,  and t h e  normal poin t  adjustment, 
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Figure 33. Notation for Section 5.6.5. 
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6n, a r e  replaced by x and y i n  that development. 
inf luence c o e f f i c i e n t s  a r e  tabula ted  i n  Table  I1 f o r  the  s p e c i f i c  case of a 
uniform spacing where Ax = As = 1. 

The r e s u l t i n g  values  of t he  

A s  indicated i n  Table  11, the inf luence c o e f f i c i e n t s  for a point  on a 
s p l i n e  curve involve a l l  of t he  o ther  po in ts  on t h e  sp l ine ,  That is, the  
movement of any one point  affects the  curvature  a t  a l l  of t he  poin ts ,  a l -  
though the e f f e c t  on t h e  curvature  a t  d i s t a n t  po in ts  i s  s m a l l .  To include 
t h e  e n t i r e  set of s p l i n e  inf luence c o e f f i c i e n t s  is imprac t ica l ,  because it 
would lead t o  a completely dense, rather than sparce,  c o e f f i c i e n t  mat r ix  f o r  
t he  co r rec t ion  equation. Therefore,  the curvature  inf luence c o e f f i c i e n t s  a r e  
always t runcated t o  5 poin ts ,  o r  less near boundaries. The method of trun- 
c a t i n g  is  t o  simply rep lace  the  one long s p l i n e  w i t h  a series of shor t  
sp l ines .  Each shor t  s p l i n e  passes through only the  point i n  quest ion and 
t h e  t w o  upstream and two downstream neighbors, i f  t hey  e x i s t .  If the  loca l  
ve loc i ty  is  supersonic,  then three (or  two) upstream poin ts  and no downstream 
po in t s  are included t o  dup l i ca t e ,  i n  effect ,  t h e  supersonic curve f i t  of 
Sec t ion  5.2.3. 

A r t i f i c i a l  boundary condi t ions  a r e  enforced a t  the  upstream and down- 
stream ends of t h i s  t runcated spl ine.  For subsonic flow, t h e  se lec ted  
boundary condi t ion  i s  t h a t  y" = 0 a t  each end (remember y = 6n). However, 
i f  t h e  t runcated s p l i n e  end point  i s  a l s o  a s t reamline end poin t ,  then the  
boundary condi t ion  is  chosen t o  agree w i t h  t h e  curvature  end condi t ion dis-  
cussed i n  Sec t ion  5.2.2. For supersonic poin ts ,  the end opt ions  a r e  again 
chosen t o  be equivalent  t o  those used for the c a l c u l a t i o n  of curvature.  

I It is i n t e r e s t i n g  t o  no t i ce  how d i f f e r e n t  the s p l i n e  c o e f f i c i e n t s  are 
from those  of a polynominal. 
t h e  3-point parabola formula is commonly used f o r  subsonic flow, t h e  s p l i n e  
formula i s  found t o  be considerably d i f f e r e n t  and, w e  be l ieve ,  more 
accurate.  

T h i s  is  i l l u s t r a t e d  i n  Table 11. Although 

5.7 MATRIX SOLUTION PROCEDURE 

I n  the  previous sec t ion ,  equat ions f o r  the  s t reamline pos i t ion  cor- 
rect$on, 6n, were developed for  each g r id  point.  A t  i n t e r i o r  po in ts  and 
flow i n l e t / e x i t  boundary po in t s ,  Equation 86 is  used together  w i t h  
Equations 84 and 85. And either Equation 89 o r  Equation 107 through 
110 are used a t  t h e  orthogonal l i n e  boundary points.  T h i s  y i e l d s  a s y s t e m  
of simultaneous equat ions where a t  any 
equation can be w r i t t e n  i n  the form: 

11 cen t r a l "  point  t h e  appl icable  

[Ai1) + A i 2 ) ]  6, + A 5 5  6 + Asss + A 7 7  6 + A86* = RHS 

The nota t ion  6 i s  used i n  place of 6n f o r  b rev i ty  and the  subsc r ip t s  r e f e r  
t o  neighboring po in t s  as ind ica ted  i n  Figure 34. I f  t h e  ve loc i ty  a t  point 
4 is  subsonic, then point  1 i s  not included (A1=O); i f  t he  ve loc i ty  i s  
supersonic then po in t s  5 and 6 are both omitted (A5 = A6 = 0). 
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Figure 34. Arrangement of Neighboring Points for the General 
Subsonic/Supersonic Star. 
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It should be noted t h a t  po in t s  1 t o  6, as shown i n  Figure 34, never 
include any of the spec ia l  po in ts  which terminate  a p a r t i a l  orthogonal. 
These poin ts  are skipped by extending the  star,  as required,  t o  t he  next 
po in t  i n  either t h e  downstream or upstream d i r ec t ion .  

In  a l l  cases ,  
c o e f f i c i e n t s  t i m e s  

(1) 
AI,  A2, A3, A4 
t h e  c o e f f i c i e n t  B1. For example: 

, As, and A6 are t h e  curva ture  inf luence 

A 1  = B1 G1 

A 2  = B 1  G2 

AI1) = B G 1 4  

etc. 

The values  of A7, A8, and A i 2 ) ,  f o r  i n t e r i o r  po in ts ,  are related to  t h e  
flow d i f f e rence  between s t reamlines .  These c o e f f i c i e n t s ,  given by Equation 
84 for axisymmetric geametry, are: 

- 2n rk-l , 
A7 - Wk - wk-l 

- 2n rk+l  
- Wk+l - Wk ¶ 

1 1 + A:~) = -2n rk 1 [ 'k+l - 'k 'k - 'k-1 

For a two-dimensional conf igura t ion ,  t h e  (2n r) f a c t o r s  a r e  replaced 
by uni ty .  Double s t reamlines  (which separate two adjacent  channels) are 
disconnected; the f i n i t e  difference equation of the  form of Equation 111 is 
only w r i t t e n  for the second of the two coincident  l i nes .  
t h e  following equat ion is  employed: 

For the first l i n e ,  

The "4b" and "48" subsc r ip t s  i nd ica t e  the po in t s  which belong t o  the 
lower and upper channel, respec t ive ly .  For non in te r io r  po in ts ,  t h e  va lues  
of A 1  t o  A8 are s i m i l a r l y  def ined according t o  the  equat ions of t h e  previous 
sect ion. 

The set of equat ions def ined by Equation 111 are solved by a "block" 
r e l axa t ion  method. I n  t h i s  procedure, an i n i t i a l  guess f o r  t h e  va lues  of 
6 i s  successively relaxed u n t i l  the  so lu t ion  does not change; v i z ,  t h e  
so lu t ion  i s  constant  wi th in  a spec i f i ed  tolerance.  The opt ions  ava i l ab le  
f o r  sweeping t h e  f i e l d  are: 
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a )  Solving orthogonal l i n e  blocks,  sweeping upstream t o  downstream 

b) Solving s t reamline blocks,  sweeping from the c e n t e r l i n e  t o  t h e  
outer  r ad ius  (or from small y t o  large y )  

c)  Al t e rna te  use of a)  and b)  

Included i n  t h e  r e l axa t ion  procedure i s  an acce le ra t ion  factor, p ,  which 
serves  the  same purpose as the over re laxa t ion  f a c t o r  i n  the point-relaxat ion 
method. For the  t w o  t y p e s  of block re laxa t ion ,  Equation 111 i s  rewr i t t en  
as follows: 

O r  t hogona 1 Blocks : 

A767 + [ A4 (2) + 4 1 ) ] 6 4  + A8s8 = RHS - A1 61 + A 2 6 2  + A36, + 

Streamline Blocks: 

A16, + A262 + 

A 6 + (1-p) - 1  7 7  

1 + A 6 + A666 5 5  
(113a) 

A363 + pl” + pA12)] 64 + A 5 5  6 + A666 = RHS 

A i 2 )  64 + A868] (113b) 

The terms involving the s t reamline adjustments on the modified r i g h t -  
hand side of each equat ion a r e  evaluated using the  r e s u l t s  of t h e  previous 
iterate. Orthogonal l i n e  blocks r equ i r e  t h e  so lu t ion  of a t r i d i agona l  
matr ix ,  w h i l e  s t reaml ine  blocks r equ i r e  t h e  so lu t ion  of a pentadiagonal 
matrix.  In both ins tances ,  t h e  so lu t ion  is  obtained by a l e f t - r i g h t  de- 
composition of the c o e f f i c i e n t  mat r ix  followed by back-subst i tut ion 
The so lu t ion  i s  assumed t o  be converged when the maximum change from one 
i t e r a t i o n  t o  the next i s  wi th in  a specified tolerance.  Spec i f i ca l ly  i t  
is required that:  

where 66 is the  change i n  6 between two successive sweeps a t  a given point .  

The acce le ra t ion  factor,  p ,  may be either taken as cons tan t  o r  allowed 
t o  vary w i t h  the sweep number. Using t h e  results of Peaceman and Rachford 
(ref. 141, t h e  acce le ra t ion  f a c t o r  i s  determined a s  a func t ion  of t h e  sweep 
number and the  t o t a l  number of poin ts  i n  the f i e ld .  The la t te r  parameter 
is  t e n t a t i v e ,  s ince  the S’IC program uses  a nonuniform g r i d ,  and the  
Peaceman-Rachford r e l a t i o n  was developed f o r  a uniform grid.  
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where : 

n = sweep number 

pB = base acce le ra t ion  f a c t o r  

pA 

NM = number of g r i d  poin ts  i n  the f i e l d  

= hal f  of t h e  amplitude of the s inusoida l  v a r i a t i o n  

The standard mode of opera t ion  i s  t o  a l t e r n a t e  between the orthogonal 
and s t reamline block sweeping. When the  sweep number reaches t h e  s t age  
where n = 2m/~r then n, as used i n  Equation 114, i s  reset t o  1. 
s u l t i n g  va r i a t ion  i n  convergence f a c t o r  is depic ted  i n  Figure 35. 

The re- 

As i n  the case of successive point  over re laxa t ion  (SOR),  an optimum 
value of p corresponding t o  t h e  minimum problem convergence t i m e ,  may be 
determined. Se lec t ion  of the optimum acce le ra t ion  f a c t o r s  is discussed 
below. 

An i n t e r n a l  flow test case  w i t h  Mo = 0.09 was chosen t o  optimize the 

w a s  es tab l i shed  by sys temat ica l ly  reducing pB 
acce le ra t ion  factor f o r  t he  a l t e r n a t i n g  d i r e c t i o n  so lu t ion  procedure. The 
mat r ix  so lu t ion  t i m e  vs. p 
from uni ty  to  a minimum va!?ue of 0.45. The r e s u l t s  a r e  depicted i n  Figure 
36. 

As ind ica ted ,  the  optimum PB s e t t i n g  occurs somewhere i n  the  v i c i n i t y  
of 0.5 to 0.6. With PB = 0.4, the  block r e l axa t ion  diverged. 
t h e  matr ix  so lu t ion  time w a s  42.4 percent of the t o t a l  i t e r a t i o n  c y c l e  t i m e  
which includes one pass through Steps  3 through 12 of Sect ion  3.0. 

For pB = 0.5, 

Based on t h i s  test and o the r  r e s u l t s  similar t o  t h i s ,  p g  and pA have 
both been i n i t i a l i z e d  to  0.5 i n  the computer code. 
input  by the  user.  

A l t e r n a t e  values  may be 

5.8 STREAMLINE ADJUSflMENT 

To ad jus t  t h e  s t reamline pos i t ion ,  t he  coordinates are moved i n  the  
normal d i r e c t i o n  by t h e  computed 6x1's. 

Z = zp- Cv 6n s i n  9, 

P+1 = r P + Cv 6ncos  r 
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The s t reamline angles ,  gl, are those found from t h e  curve f i t s  of Sect ion 
5.2. 
vergence factor which is genera l ly  equal t o  uni ty ,  

The superscr ip t  p i s  the i t e r a t i o n  sequence number, and Cv is a con- 

The new values  of z and r then form the  basis f o r  t he  next i t e r a t i o n ,  or 
for  the  so lu t ion  which is  pr in ted  out .  The next s t e p  i n  the  procedure is  t o  
again compute the curva tures  and from these  compute t h e  v e l o c i t i e s  and flow 
balance e r ro r s .  

5.9 BOW SHOCK WAVE 

The o r i g i n a l  i n t e n t  of the ana lys i s  development w a s  t o  include t h e  
approximate bow wave method of Moeckel (Reference 15.) With the inc lus ion  
of the  bow wave, it would have been poss ib le  t o  analyze nace l l e s  a t  t ransonic  
Mach numbers above 1.0. During the development of STC w i t h  the bow wave, 
s e r ious  d i f f i c u l t i e s  were found and a r e l i a b l e  computer so lu t ion  was not 
p r a c t i c a l .  
n ished;  l) a s tandard,  f u l l y  func t iona l  STC computer ana lys i s  without t h e  
Moeckel bow wave and 2) a s t a t u s  l eve l  program incorporat ing the bow wave 
which was provided f o r  t h e  purpose of f u t u r e  inves t iga t ion .  

Accordingly, t w o  vers ions of t h e  STC computer program were fur- 

Technical ly ,  the  approximate nature  of t h e  Moeckel method compromises 
the q u a l i t y  of the Sn:  so lu t ion .  The assumed hyperbol ic  shock shape and t h e  
empir ica l ly  specified stand-off d i s t ance  force  con t inu i ty  to be v io l a t ed  
between the shock and the  body. In  addi t ion ,  once the  Moeckel bow shock 
i s  added t o  the  flow f i e l d  (after three i n i t i a l  flow f i e l d  refinements t o  
s t a b i l i z e  the s t reamlines  and orthogonals),  f u r t h e r  refinement of t h e  flow 
f i e l d  i n  the  v i c i n i t y  of t he  shock is stopped. A t  t h e  same t i m e ,  s t reamline 
curvature  near t he  shock i s  preset t o  zero. The good f e a t u r e s  of STC a r e  
not pa r t  of t h e  bow wave so lu t ion ,  Hence, t h e  STC r e s u l t s  are not enhanced 
by including t h e  approximate bow wave solut ion.  

The STC so lu t ion  w i t h  the  bow shock has been programmed as a separate 
The d i f f i c u l t i e s  computer program s ince  extensive changes were necessary. 

t h a t  developed during checkout preclude a usefu l  so lu t ion ,  but  Volume I1 
of the User's Manual (Reference 16) shows how t o  use t h i s  vers ion  of STC. 

For Mach numbers up t o  1.2, it i s  recommended tha t  t h e  s tandard vers ion 
of STC be run i n  the  supersonic mode w i t h  gr id  refinement suppressed near  
t h e  shock. A t  Mach 1.2, t h e  nominal s t reamline d e f l e c t i o n  through t h e  shock 
i s  4' with  a maximum to t a l  pressure loss c o e f f i c i e n t  of 0.007. 
d i t i o n s  can be approximated using the standard STC program. 

These con- 

5.10 INTEGRAL MOMENTuld CHECKS AN13 PRESSURE DRAG EVALUATION 

The S I C  Program evalua tes  t h e  thrus t /drag  on each boundary sur face  and 
then v e r i f i e s  these fo rces  by performing "overall" momentum balance checks 
for each of the f l u i d  streams. For a t y p i c a l  nace l l e  configurat ion,  a 
momentum balance is  computed f o r  the i n l e t  stream, t h e  ex te rna l  stream, and 
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t h e  jet  exhaust stream. For t h e  i n l e t  stream, as an  example, t h e  en te r ing  
momentum ( o r  ram drag) ca l cu la t ed  us ing  f l u i d  p rope r t i e s  a t  t h e  most upstream 
s t a t i o n  i s  f i r s t  determined. Second, t h e  pressure  times t h e  pro jec ted  a rea  
of t h e  cowl s tagnat ion  s t reaml ine  i s  computed. T h i s  i s  added t o  t h e  a x i a l  
pressure fo rce  on the  underside of t h e  i n l e t  l i p  from the  s t agna t ion  point 
t o  t h e  last  c a l c u l a t i o n  s t a t i o n  (near the  f a n  face) .  Third,  a s imilar  
p r e s s u r e a r e a  i n t e g r a t i o n  t o  include t h e  a x i a l  f o r c e s  on t h e  sp inner  i s  
performed. F i n a l l y ,  t h e  sum of t h e  en te r ing  momentum and t h e  in t eg ra t ed  
upper and lower boundary fo rces  ( inc luding  the  add i t ive  drag  of t h e  cowl 
approach s t reaml ine)  i s  compared t o  the  in t eg ra t ed  a x i a l  momentum f l u x  a t  
t h e  l a s t  s t a t i o n  i n s i d e  t h e  i n l e t .  A discrepancy w i l l  i n d i c a t e  inaccurac ies  
i n  t h e  computed pressure  d i s t r i b u t i o n s  o r ,  perhaps, i n s u f f i c i e n t  refinement 
of t he  c a l c u l a t i o n  g r id  f o r  adequate reso lu t ion .  I t  has been found t h a t  
t h e s e  momentum checks are q u i t e  valuable f o r  quickly a s ses s ing  t h e  computed 
r e s u l t .  
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6.0 CONCLUS IONS 

The Streamtube Curvature Analysis has  been developed nnd a computer 
so lu t ion  has  been u t i l i z e d  t o  so lve  the  t ransonic  flow f i e l d  over m i  iso- 
l a t e d  nacel le .  The a n a l y s i s  includes the  c a p a b i l i t i e s  to: 

Analyze t h e  s tagnat ion  region of an i n l e t  with g r i d  refinement 
a s  needed so t h a t  t he  s tagnat ion  s t reamline is proper ly  predicted.  

Handle mul t ip le  streams of  d i f f e r i n g  s tagnat ion  p rope r t i e s  with 
a s t a t i c  pressure  balance a t  the  in t e r f ace .  

P red ic t  t he  loca t ion  and s t rength  of imbedded shock waves on t h e  
ex te rna l  nace l l e  surface.  

Define an a n a l y t i c a l  f a r - f i e l d  boundary so t h a t  f r e e - f l i g h t  con- 
d i t i o n s  a r e  predicted.  

Achieve g rea t e r  so lu t ion  economy f o r  t he  t ransonic  f l i g h t  speed 
regime i n  t h a t  t h e  computational t i m e s  a r e  5 t o  10 times f a s t e r  
than s ta te-of- the-ar t  time-dependent methods f o r  t h e  same number 
of  g r i d  points .  

Provide a user-or iented design a n a l y s i s  t o o l  f o r  responsive 
so lu t ions  t o  engineering problems. 

The inv i sc id  pressure  d i s t r i b u t i o n s  pred ic ted  by t h e  Streamtube Curva- 
t u r e  Analysis compare very w e l l  wi th  test r e s u l t s  when viscous i n t e r a c t i o n s  
are minimal. When shocks a r e  pred ic ted ,  t h e  viscous i n t e r a c t i o n s  and bound- 
a r y  l aye r  separa t ion  regions prevent  good c o r r e l a t i o n s  wi th  test data. 

The computer ana lys i s  f i l l s  a void i n  t h a t  severa l  techniques a r e  
a v a i l a b l e  for solving the inv i sc id  equations of motion about a r b i t r a r y  two- 
o r  three-dimensional bodies a t  t ransonic  speeds, but none have handled the  
complete nace l l e  with i n l e t  flow and exhaust f l o w .  The Streamtube Curvature 
Analysis provides t h e  c a p a b i l i t y  t o  p r e d i c t  t h e  t ransonic  flow f i e l d  about 
t yp ica l  a i r c r a f t  engine i n s t a l l a t i o n s  i n  i s o l a t e d  nace l l e s  a t  t ransonic  
speeds. The so lu t ion  technique provides a design ana lys i s  tool which w i l l  
provide guidance for wind tunnel t e s t i n g  t o  develop nace l l e  shapes to  min- 
imize drag within given design r e s t r a i n t s .  

The d e t a i l s  of  t h e  computer program operat ion,  usage, and s t ructure  
a r e  documented i n  t h e  U s e r s  Manual (Reference 16). 
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7.0 APPENDIX A 

SECOND-ORDER STREAMLINE CURVA'ISJRE EQUATIONS FOR 
ISENTROPIC PLANAR FLOW 

In this section the second-order equation which describes the shape 
of the streamline is derived. An orthogonal system is chosen. The variable 
n is a measure of the distance across the streamlines and s is the distance 
along a streamline. The partial differential operator a indicates that the 
direction of differentiation is normal to the streamline. The operator D 
indicates that the direction of differentiation is along a streamline. "he 
basic equations are: 

Continuity : pv an =: aY (115) 

av 
Momentum Equation for an 

- = -cv Crocco Form of Normal 

Irrotational Flow: 

where : 

V = velocity 

p = density 

a@ as C = streamline curvature = - 
s = streamwise coordinate 

n = cross-stream coordinate 

'#I = streamline angle measured from horizontal 

Equation 115 is differentiated as follows: 

1 $ =  pv 

90 



Equation 117 is s u b s t i t u t e d  i n t o  Equation 118 and t h e  r e s u l t  renrranged: 

1 V 2 f !  l a v = O  
2 a n  

(1 + a v )  7 an 
- + -  
ay2 ( p V I 2  

* I .  

Now Equation 116 i s  s u b s t i t u t e d  i n t o  Equation 119: 

Equation 120 i s  t h e  des i r ed  second-order equation f o r  n ,  where t h e  curva- 
t u r e  is analogous t o  a d e r i v a t i v e  of the form (DZn/Ds2). 
i s e n t r o p i c ,  the c o e f f i c i e n t  i n  pa ren thes i s  may be expressed a s  follows: 

Since t h e  flow i s  

t h u s ,  t h e  equation reduces 

C lea r ly ,  t h e  e l l i p t i c  and hyperbolic na ture  of t h e  equation i s  evident 
when t h e  Mach number i s  less than  and g r e a t e r  than u n i t y .  

Equation 120 is now w r i t t e n  i n  t h e  following abbreviated form: 

where: 

The equat ion  i n  i t s  present  form cannot be appl ied  d i r e c t l y  t o  ob ta in  
a s o l u t i o n  f o r  n because of the  d i f f i c u l t y  of r e l a t i n g  t h e  r a d i u s  of curva ture  
t o  t h e  second streamwise d e r i v a t i v e  of n. In s t ead ,  it i s  used t o  c a l c u l a t e  
t h e  s t reaml ine  adjustments ( i n  t h e  cross-stream d i r e c t i o n )  for an assumed 
s t reaml ine  pa t t e rn .  
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To i l l u s t r a t e ,  w e  cons ider  a n  assumed set  of s t reaml ines  which pass 
through t h e  small circles i n  the  ad jo in ing  sketch. 

0 lrthogonal 

Streamline 

Calculated 
Flow Balance 

ssumed P o i n t s  

By a c u r v e - f i t t i n g  process, t he  va lues  of s t reaml ine  angle  and curva- 
t u r e ,  Co,  are determined. 
That i s ,  they are moved along t h e  s t reaml ines  so t h a t  t h e  orthogonal 
l i nes"  are t r u l y  normal to t h e  given streamlines.)  Equations 115 and 116 
are in t eg ra t ed  along t h e  orthogonal l i n e s ,  assuming t h e  value of C i s  
v a l i d ,  and from t h i s  flow balance" t h e  x-posit ions of t h e  s t reaml ine  are 
determined. We have then  t h e  following equation s a t i s f i e d :  

(The c i rc le  po in t s  are  a l s o  orthogonalized. 
11 

V I  ? 

The "o" subsc r ip t  denotes va lues  r e l a t e d  t o  t h e  assumed s t reaml ine  
p o s i t i o n s  and curva tures .  
t i o n  as ca l cu la t ed  by the  c o n t i n u i t y  equation. The t r u e  s o l u t i o n  t o  
Equation 123 is  sought;  t r u e  s o l u t i o n  values" a r e  unsubscripted. 

The "x" subsc r ip t  r e f e r s  t o  t h e  s t reaml ine  posi- 

11 

Equation 124 i s  subt rac ted  from Equation 123. The r e s u l t  is: 

a% (9 - $)+ B ( -  C + Co) = 0 

The adjustment t o  be made i n  streamline pos i t i on  i s  6n = n-n Hence, 
0' 

the above can be w r i t t e n :  

a 2 (nx-no) 
a2(sn) + B (- C + C o )  = 

ay2 ay2 
(125) 

F i n a l l y ,  w e  n o t e  t h a t :  
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D D@O - c o + c o =  d-- 
DS D s  

So t h e  d i f f e r e n t i a l  equation becomes: 
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' 8 . 0  APPENDIX B 

SECOND DERIVATIVE INFLUENCE COEFFICIENTS FOR A SPLINE 

For the interval between points i and i+l, a cubic equation may be 
written in the form: 

y = yi + bi (X - xi) + 1/2 ci (X - xi)2 + 1/6 di (X .- xi)? (128) 

Alternately, this same cubic may be expressed in terms of the ordinates 
(yi and yi+l) and the second derivatives (Ci and 
Xi+l, namely: 

at the points xi and 

ci+lAxi) 6 (=xi) 
'i ciAx. 

l+(G - -1) 6 (Xl+l - x) + 

where Axi = xi+l - xi. 
interval boundaries, Equation129 may be used to derive a set of N-2 
equations for the c's: 

By requiring a match in the 'first derivative at the 

I 

Two additional end conditions then yield a total of N equations. A 
variety of end conditions is possible. The following are available as 
standard options: 

(1) The first derivatives yl' and/or yN' are zero: I 
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(2) 

C l  = 0 (133) 

The second de r iva t ives  yl" and/or yN" are zero: 

% = o  (134) 

(3) The t h i r d  de r iva t ive  of t h e  end polynominal is  a spec i f i ed  
f r a c t i o n ,  F, of t h e  t h i r d  de r iva t ive  of t h e  polynominal second 
from t h e  end: 

c3 = 0 - -  1 + qc2-- F 
Ax1 c1 + (q Ax2 Ax2 

(4) Same as  Option 3 except t h a t  YN is  not chosen a r b i t r a r i l y .  
Instead it is required t h a t  yNi = -UYN. (Note t h i s  opt ion 
is coded only f o r  t h e  downstream end of t h e  s p l i n e . )  

3 YN-1  
6 - 6 [ A  + U 

'N- 2 AxN- 2 1 + a5-1 
=- 

AXN- 2 

(135) 

(137) 

Equations 130 through 136 can be wri t ten i n  mat r ix  form: 

where A and B are square c o e f f i c i e n t  matrices, and c and y are column 
vec to r s  of l ength  N. I f  Option (4) i s  used, then Equation 137 rep laces  
Equation 130 f o r  i = N-1, and t h e  s i z e  of t h e  a r r a y s  are reduced by one. 
Generally,  s p l i n e s  are f i t t e d  t o  given sets of data and Y is  known. 
w e  f i n d  t h e  inf luence c o e f f i c i e n t s  G by premultiplying Equation 138 by 
t h o  inverse  of A. 

Here, 
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c j  = G j , i  y i  (139) 

where : 

G is t h e  array of c o e f f i c i e n t s  which g i v e  the inf luence of yi i = 1, 2...N 
on the second de r iva t ive  C j .  

W e  comment tha t  G,  as used i n  t h i s  s ec t ion ,  i s  a square matrix. The 

In  sec t ion  5 . 6 . 5 ,  the  nota t ion  G i  i s  used t o  
desired set of inf luence c o e f f i c i e n t s  f o r  the second de r iva t ive  a t  point j 
i s  t h e  j t h  row of the  matrix.  
i nd ica t e  a vector  which i s  the  j t h  row of t h e  mat r ix  G J , ~  of t h i s  sec t ion .  



9.0 A P P E N D I X  C 

NOMENCLATURE 

Symbols 

A 

A 

AO/AHL 

a 

b 

C 

C 

cD 

cP 

C 
P 

‘DP 

DHL’DMax. 

F 

f 

9 

G 

H 

M 

0 
M 

n 

flow area  measure normal t o  t h e  s t reamline = Jmrdn 

c o e f f i c i e n t  mat r ix  

mass flow r a t i o  

unperturbed i n t e r f a c e  s t reamline rad ius  

c o e f f i c i e n t s  i n  the  s t reamline co r rec t ion  equation 

first de r iva t ive  

curvature ,  = - d$l/ds 

second de r iva t ive  

i n l e t  drag c o e f f i c i e n t  

pressure  c o e f f i c i e n t  

s p e c i f i c  hea t  a t  constant  pressure  

in t eg ra t ed  pressure  drag c o e f f i c i e n t  

diameter r a t i o  

s t reamline curvature  curve- f i t t ing  parameter, see Sec t ion  5.2.2 

f r a c t i o n a l  pos i t i on  i n  t h e  i n t e r v a l  

1-f 

curvature  inf luence c o e f f i c i e n t s  

enthalpy 

Mach number 

free-stream Mach number 

d i s t a n t  measure along an orthogonal 
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n 

P 

Q 

9 

R 

r 
9 

s 

S 

T 

U 

X’DMax. 

X, Y 

Z 

U 

B 

matr ix  r e l axa t ion  sweep number 

pressure  

parameter defined by Equation 104 

dynamic pressure  

p e r f e c t  gas cons tan t  

r a d i u s  

entropy 

d i s t ance  measured along a s t reaml ine  

temperature 

a x i a l  component of ve loc i ty  

v e r t i c a l  component of v e l o c i t y  

t o t a l  component of v e l o c i t y  

cumulative flow r a t e  

norma 1 i zed i n l e t  1 eng t h  

rec tangular  coordinate a x i s  

a x i a l  p o s i t i o n  

angle  of t h e  chord between two adjacent  p o i n t s  on t h e  
curve 

parameter r e l a t i n g  ve loc i ty  co r rec t ions  on t h e  two 
s i d e s  of the j t h  s l i p  l i n e  

M compressible s i m i l a r i t y  parameter, (1-3) 

r a t i o  of s p e c i f i c  h e a t s  

dummy z-variable 

dummy y-variable 

dummy x-variable 

coordinate system i n  t h e  s t reaml ine  d i r e c t i o n  
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P 

P 

0 

Q 

Y 

w 

Subscr ip ts  

a 

a 

b 

b 

FF 

i 

k, j 4 

M '  

0 

W 

1 

2 

coordinate  system i n  the  d i r ec t ion  normal t o  s t reamline 

f l u i d  dens i ty  

matr ix  re laxa t ion  acce le ra t ion  f a c t o r  (Sect ion 5.7) 

source densi ty  

s t reamline angle  

orthogonal l i n e  angle  

v e l o c i t y  p o t e n t i a l  

stream funct ion 

v o r t i c i t y  

f irst  end of t h e  i n t e r v a l  

evaluated above a s l i p  l i n e  

second end of t he  i n t e r v a l  

evaluated below a s l i p  l i n e  

fa r -  f i e l  d i n t e r f a c e  s treaml ine  

orthogonal l i n e  index (Section 5.5 & 5 . 6 )  

stream1 ine  index 

f i e l d  poin t  index 

i n i t i a l  o r  assumed values  

free stream 

s t a t i c  

unperturbed i n t e r f a c e  s t reaml ine  pos i t i on  

t o t a l  

ca l cu la t ed  by using t h e  assumed s t reamline curvatures  

s t reamline d i r ec t ion  

orthogonal l i n e  d i r ec t ion  
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Superscripts 

(1) Denotes streamwise connection 

(2) Denotes crosswise connection 

1 1st derivative 

1 1  2nd derivative 

I l l  3r d derivative 

p iteration sequence number 
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10.0 ADDENDUM - PART 11, TURBULENT BOUNDARY LAYER AND TURBULENT SEPARATION 
PREDICTION METHODS, By D . J .  Laht i  and P.H. Heck, General 
E l e c t r i c ,  A i rc ra f t  Engine Group, Cinc inna t i ,  Ohio 45215 

10.1 INTRODUCTION 

The cur ren t  s t a t e  of t h e  a r t  of computing the  development of  tu rbulen t  
boundary l aye r s  on a r b i t r a r y  axisymmetric and/or p lanar  bodies does no t  allow 
f o r  t he  complete so lu t ion  of t he  governing equations without some assumptions 
being made. These assumptions def ine  the  r e l a t ionsh ip  of  t h e  f luc tua t ing  
q u a n t i t i e s  t o  t h e  mean flow q u a n t i t i e s  i n  determining t h e  tu rbu len t  t r anspor t  
p roper t ies .  As a r e s u l t ,  many computational methods have evolved over t he  
pas t  few years ,  each method depending on the  c losure  assumptions and, t o  some 
ex ten t ,  t he  l imi t ed  data ava i l ab le  t o  support  those assumptions. Without 
enough v a l i d  data t o  p o s i t i v e l y  subs t an t i a t e  o r  disprove these c losure  as- 
sumptions it becomes d i f f i c u l t ,  i f  not  impossible, t o  a s ses s  t h e i r  t r u e  
m e r i t s .  

Although the re  is general  wide-scale agreement t h a t  t h e  f i n i t e  d i f fe rence  
methods do possess  severa l  advantages i n  computing turbulen t  boundary l aye r s ,  
they a l s o  possess some disadvantages. The primary disadvantages from t h e  
p r a c t i c a l  o r  engineering po in t  of view is  t h e i r  r e l a t i v e l y  long computational 
t i m e s  and the  a t tendant  higher  costs. 

There is general  agreement within the  General Electric A i r c r a f t  Engine 
Group t h a t  not a l l  problems r equ i r e  t h e  de t a i l ed  so lu t ions  provided by t h e  
f i n i t e  d i f fe rence  boundary l aye r  methods. A l a r g e  majori ty  of t he  design de- 
c i s i o n s  made can be accura te ly  and confident ly  supported by t h e  l e s s  expensive, 
ye t  accura te ,  i n t e g r a l  boundary l a y e r  so lu t ions .  A s  a d i r e c t  r e s u l t  of  t h e i r  
r ap id  computational t i m e s  and demonstrated accuracy, they a r e  very a t t r a c t i v e  
for coupling w i t h  i nv i sc id  flow ana lys i s  programs. 
viscous computer program provides a very valuable  and e f f i c i e n t  engineering 
too l .  The i n t e g r a l  boundary l aye r  method se l ec t ed  f o r  coupling with t h e  
Streamtube Curvature Program incorporates  t he  method of S t r a t f o r d  and Beavers 
(Reference 17) and is discussed i n  the  following sect ion.  

This coupled inv isc id /  
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10.2 TECIINICAL DISCUSSION 

I 10.2.1 a r b u l e n t  Boundary Layer Method 

Reference 18 examines seve ra l  well-known i n t e g r a l  methods f o r  calcu- 
l a t i n g  t h e  boundary l aye r  c h a r a c t e r i s t i c s  and c o r r e l a t e s  the  r e s u l t s  a s  
func t ions  o f  free-stream Mach number and Reynolds number based upon an equiv- 
a l e n t  f l a t  p l a t e  length (see References 18 through 2 5 ) .  
f inds  t h a t  a l l  the  methods concur i n  the conclusion t h a t  the momentum thick- 
ness  may be expressed i n  t h e  form: 

This examination 

I where : 

I For the flow on a f l a t  p l a t e ,  the  Mach number, and thus  t h e  funct ion P, would 

be constant  so t h a t  X = x and e = f (M) x Rx 

methods agree i n  saying t h a t  t h e  momentum thickness  i n  a flow with pressure  
grad ien t  may be obtained from the  expression f o r  a f l a t  p l a t e ,  provided t h a t  
ac tua l  d i s tance  x is replaced by an equivalent  d i s tance  X, according t o  
Equation 142. Consequently, t h e  methods can only d i f f e r  from one another i n  
the  expression f o r  t h e  flow on a f l a t  p l a t e  and i n  t h e  value of  t he  funct ion P. 
The only p a r t  of  t h e  r e s u l t  which can d i f f e r  due t o  d i f f e rences  i n  each of t h e  
a n a l y t i c a l  t reatments  is, therefore ,  t he  funct ion P. 

-b . In  effect, then, a l l  t he  

I 

Five of  t h e  methods employ transformations,  each being some f o r m  of 
Stewartson 's  transformation from compressible t o  incompressible flow. There- 
fo re ,  d i f fe rences  i n  P a r e  due t o  d i f fe rences  c a r r i e d  over from incompres- 
s i b l e  so lu t ions .  S t r a t f o r d  and Beavers then conclude t h a t  r a t h e r  than t r y i n g  
t o  ass ign  any p r i o r i t y  due t o  t h e  m e r i t  of  t h e  incompressible so lu t ions ,  they 
r a t h e r  choose t o  represent  P by a reasonable average of a l l  t h e  so lu t ions .  
This  is the  concept employed by Thwaites (Reference 26) f o r  incompressible 
laminar flow, and it proves t o  be t h e  most expedient method under t h e  
circumstances. 

In  summary, t h e  ca l cu la t ion  procedure i s  a s  follows. 

~ 

The boundary l aye r  momentum thickness  is  express ib le  i n  the form: 

where X is the  equivalent  f l a t  p l a t e  length.  It  is defined a s  t h e  length 
over which a boundary l aye r  growing on a f l a t  p l a t e  a t  t he  given Mach number 
would acquire  t h e  same thickness  a s  t h e  r e a l  boundary l aye r  at t h a t  given 
locat ion.  
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Stratford and Beavers propose the following equations as the pro- 
visional working formulas from which the following integral parameters may 
be calculated. 

For 

e = 0.036 (1 

for planar flow 

and X = 1 f Pra dx for axisymmetric flow 

pra 

P = L M / ( ~  

6 

7 
1.25 for % = 10 

1.20 for % 10 
and a = 

i 144d) 

(144e) 

(144f) 

(145a 

(145b) 
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Having these  expressions,  t h e  d i s t r i b u t i o n s  of  8 ( x )  and 
cu la ted ,  given t h e  boundary l a y e r  edge pressure  d i s t r i b u t i o n .  Once t h e  dis-  
t r i b u t i o n s  of 8 (x) and 
can be solved numerically t o  determine t h e  l o c a l  sk in  f r i c t i o n  c o e f f i c i e n t .  

6*(x)  can be ca l -  

6*(x)  a r e  known, t h e  i n t e g r a l  momentum equation 

That is: 

where, 

2 d r  28 d(3 
f dx U dx r d x  P d x  

(20 + 6*) + e -- + - -  de 2 dU c = 2 -  + - -  

0 for planar  flow 

1 for axisymmetric 

(148) 

(149) 

Equations 144 through 149 a r e  those employed i n  t h e  boundary l a y e r  
so lu t ion .  

10.2.2 Example Cases - Boundary Layer 

The s i m p l i c i t y  o f  t h e  above method is q u i t e  obvious; and, a s  discussed 
i n  t h e  In t roduct ion  s e c t i o n ,  it provides accura te  and r e l i a b l e  es t imates  of 
t h e  boundary l a y e r  e f f e c t s  so long a s  t h e  assumptions of an a d i a b a t i c  wall  
and tu rbu len t  flow throughout a r e  no t  v io la ted .  I n  p a r t i c u l a r ,  it is idea l  
f o r  ca l cu la t ing  t h e  i n t e g r a l  displacement th ickness  d i s t r i b u t i o n  along a 
surface when an inviscid/viscous i t e r a t i v e  ca l cu la t ion  i s  being performed. 

Severa l  sample cases  which demonstrate t h e  a b i l i t y  of  t h i s  i n t e g r a l  
method t o  p r e d i c t  t u rbu len t  boundary l a y e r s  a r e  discussed i n  t h i s  sec t ion .  
I n  t h e  examples which fol low,  t h e  p red ic t ions  of  t h e  S t r a t f o r d  and Beavers 
method a r e  designated S-B. I n  o rde r  t o  provide some comparison of  r e l a t i v e  
accuracy of t h i s  method with a f i n i t e  d i f f e rence  so lu t ion ,  some of t h e  exam- 
p l e s  w e r e  a l s o  analyzed using t h e  General E lec t r ic  Aero Boundary Layer 
Program. This program, designed B.L., is very s i m i l a r  t o  t h e  program de- 
veloped a t  NASA-Langley by Beckwith and Bushnell (Reference 27) .  
o f  t h e  B.L. so lu t ions  on t h e  var ious  example cases  a r e  shown t o  provide a 
re ference  from which t h e  q u a l i t y  of t h e  S-B s o l u t i o n s  can be judged. 

The r e s u l t s  

10.2.2.1 Incompressible F l a t  P l a t e  

The incompressible f l a t  p l a t e  data  of Wiegart (Reference 28) is shown 
i n  Figure 37 along with t h e  S-B and B.L. p red ic t ions .  
over t h e  f u l l  range of momentum th ickness  Reynold's numbers. Reference 28 
suggests t h a t  t h e  first data  p o i n t  is a t  about t h e  minimum Reynolds number 
f o r  t u rbu len t  flow. 

'Ihe agreement i s  good 

This is f u r t h e r  v e r i f i e d  by t h e  B.L. so lu t ion  which shows t h i s  t o  be 
a t  about t h e  same loca t ion  a s  t h e  downstream end of  t h e  t r a n s i t i o n  region. 
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10.2.2.2 F l a t  P l a t e  with Pressure  Gradient 

Reference 29 r e p o r t s  t h e  r e s u l t s  of a study t o  experimentally de- 
termine t h e  Reynolds Analogy f a c t o r  on a f l a t  p l a t e  mounted i n  t h e  diverging 
s e c t i o n  of a supersonic nozzle. 
study contained t h e  effects of wall hea t  t r a n s f e r ,  measurements of the mo- 
mentum and displacement th ickness  d i s t r i b u t i o n s  w e r e  made f o r  t h e  a d i a b a t i c  
wall  case. 
p red ic t ions .  
t he  length  of t h e  p l a t e  from t h e  leading edge. 
pressure  d i s t r i b u t i o n  was ex t rapola ted  t o  t h e  leading edge, and the boundary 
l aye r  was assumed t o  s t a r t  from there.  The p red ic t ions  i n d i c a t e  good agree- 
ment with t h e  data. 

Although most of t h e  data taken i n  t h i s  

These data are shown on Figures 38 and 39 along with t h e  S-B 
The experimental p ressure  d i s t r i b u t i o n  s t a r t e d  about 25% of 

Therefore, t h e  experimental 

10.2.2.3 Waisted Body of Revolution 

Figure 40 is a ske tch  of  the waisted body t e s t e d  by Winter, Rot ta ,  
and Smith (Reference 30).  T h i s  work is usua l ly  recognized a s  one of t h e  
bes t  a v a i l a b l e  sources of compressible tu rbu len t  boundary l a y e r  data on a 
su r face  o the r  than  a f l a t  p l a t e .  In  add i t ion ,  t h e s e  data a r e  f requent ly  
used a s  a b a s i s  f o r  comparison f o r  t h e  var ious  boundary l a y e r  p red ic t ion  
methods. 
o f  t hese  methods may be compared. 

Therefore, it serves a s  a standard r e fe rence  from which the q u a l i t y  

F igures  41 through 43 show t h e  S-B and B.L. p red ic t ions  o f  momentum 
th ickness ,  displacement th ickness ,  and sk in  f r i c t i o n  c o e f f i c i e n t ,  r e spec t ive ly ,  
f o r  a free-stream Mach number of 0.597. I n  general ,  t he  agreement with t h e  
data is very good f o r  t h e  momentum th ickness  and displacement th ickness  dis-  
t r i b u t i o n s  of both S-B and B.L. However, a t  t h i s  Mach number, t h e  sk in  f r i c -  
t i o n  p r e d i c t i o n s  tend  t o  be somewhat h igher  than t h e  data. The B.L. predic- 
t i o n s  a r e  c l o s e r  t o  t h e  data between X/L = 0.3 and X/L 
p red ic t ions  a r e  c l o s e r  between X/L = 0.7 and X/L = 1.0. 

0.7, and the S-B 

S imi l a r  p r e d i c t i o n s  a r e  made f o r  free-stream Mach numbers of 1.404, 
These p red ic t ions  a r e  compared with t h e  data i n  Figures 44 1.7, and 2.0. 

very  good f o r  both t h e  S-B and t h e  B.L. p red ic t ions .  For engineering pur- 
poses, t h e  primary advantage t o  using the S-B method is  its extreme s i m p l i c i t y  
and almost n e g l i g i b l e  expense a s  compared t o  t h e  f i n i t e  d i f f e rence  method. 

I through 52. I n  genera l ,  it can be s a i d  t h a t  i n  a l l  cases  t h e  agreement is 

10.2.2.4 Supersonic Ramp - Adverse Pressure  Gradient 

Reference 31 r e p o r t s  t h e  r e s u l t s  of measurements of t h e  tu rbu len t  
boundary l a y e r  on each of t h r e e  supersonic compression ramps. 
a l a r g e  quan t i ty  of da ta  was taken, t h e  sk in  f r i c t i o n ' c o e f f i c i e n t s  w e r e  
measured. 
data. The agreement is seen t o  be very good i n  a l l  t h r e e  cases. 

Although not 

P red ic t ions  using S-B a r e  shown i n  F igure  53 along with the test 
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10.2.3 Separation h e d i c t i o n  Method 

I n  general, t he  pred ic t ion  of turbulent boundary l a y e r  separation is 
bes t  accomplished by performing a f i n i t e  d i f fe rence  boundary l aye r  so lu t ion  
over t he  given body surface. Separation is predic ted  a t  t h e  poin t  where the  
l o c a l  sk in  f r i c t i o n  coe f f i c i en t  becomes zero. Although t h i s  method provides 
reasonably accura te  r e s u l t s ,  it requi res  a complete boundary l aye r  so lu t ion  
which may not always be desired o r  necessary. 

In  the  p a s t  t h e  only o the r  a l t e r n a t i v e s  t o  a complete f i n i t e  d i f fe rence  
boundary l aye r  so lu t ion  w e r e :  
o r  2) t he  determination of some pressure grad ien t  parameter which takes  on a 
c e r t a i n  value a t  o r  near t h e  separa t ion  point. The i n t e g r a l  boundary l aye r  
so lu t ions  w e r e  known t o  give r e l a t i v e l y  l a rge  e r r o r s  i n  sk in  f r i c t i o n  co- 
e f f i c i e n t  near t h e  separa t ion  poin t ;  and, a s  a r e s u l t ,  p red ic t ions  of sepa- 
r a t i o n  w e r e  un re l i ab le  and inconsistent.  Subsequent improvements i n  the  
in t eg ra l  methods allowed more accurate boundary l aye r  sk in  f r i c t i o n  calcu- 
l a t i o n s  and, thus,  separa t ion  predic t ions ;  however, they w e r e  accompanied 
by increased cos t  and complexity. The simple pressure grad ien t  parameter 
methods of predic t ing  separation have been used w i t h  some success f o r  some 
flows. 
been un re l i ab le  and inconsistent.  

1) a complete i n t e g r a l  boundary l aye r  so lu t ion ,  

However, they have not received widespread use because they a l s o  have 

Reference 32 reviews severa l  methods f o r  ca l cu la t ing  incompressible 
turbulen t  boundary l a y e r  separation, and conclddes t h a t  t he  S t r a t f o r d  method 
(Reference 33) q u i t e  s a t i s f a c t o r i l y  p red ic t s  it. However, a s  is o f t en  the 
case,  there is very l i t t l e  information regarding i ts  usefulness f o r  compres- 
s i b l e  flows. Therefore, t h e  S t r a t f o r d  method was modified f o r  compressibil i ty 
and exercised on severa l  compressible flow configurations where boundary l aye r  
separation was measured. I n  addi t ion ,  General Electric's f i n i t e  d i f fe rence  
AERO Boundary Layer program was a l s o  run on seve ra l  of these configurations 
t o  e s t a b l i s h  some s o r t  of reference from which the  q u a l i t y  of t he  S t r a t f o r d  
p red ic t ions  could be judged. F ina l ly ,  t h i s  method has been incorporated i n t o  
the  NASA-Langley version of t he  STC/viscous ana lys i s  program. 

Reference 33 presents  t h e  complete development of t h e  bas ic  theory f o r  
pred ic t ing  t h e  separa t ion  of an incompressible turbulen t  boundary layer.  
Only t h e  basic ideas  w i l l  be discussed here. 

The method pos tu l a t e s  t h a t  t h e  turbulen t  l a y e r  can be divided i n t o  two 
d i s t i n c t  regions. 
lowering of the dynamic pressure  p r o f i l e ,  but does not change i ts  shape. 
The losses  due t o  shear stresses within t h i s  region a r e  assumed t o  be almost 
t h e  same a s  those on a f l a t  p l a t e  under the  influence of t h e  same pressure 
rise. I n  t h e  inner  region, however, the i n e r t i a  fo rces  a r e  too small t o  
overcome t h e  pressure  gradient,  and t h e  ve loc i ty  p r o f i l e  is d is tor ted .  In  
t h i s  region t h e  pressure fo rces  a r e  balanced pr imar i ly  by t h e  t ranverse  
gradient of  shear. 

In  t h e  ou te r  region, t h e  pressure  rise j u s t  cahses a 
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Basical ly ,  S t r a t f o r d  p ieces  these  two regions toge ther ,  descr ibing 
the  o u t e r  region using the s i m i l a r i t y  power-law p r o f i l e :  

and t h e  inner  region using the  reduced boundary l aye r  momentum equation: 

(151 

U t i l i z i n g  Equation 150 and the  de f in i t i on  of t h e  stream funct ion 
Judy, one can a r r i v e  a t  t h e  following expressions f o r  t he  ou te r  '! = 

region: 

uo ( fYn - 
b U  
ay=x 

u = u  0 (%yn 
and, 

In tegra t ing  Equation 151 and u t i l i z i n g  P rand t l ' s  mixing length expression, 
one can a r r i v e  a t  t h e  following expressions f o r  the  inner  region when t h e  
shear  stress is equal t o  zero: 



The K is t h e  Karman constant ,  and B is an empir ical  constant  in t ro-  
duced t o  account for  the f a c t  t h a t  Equation 151 is only approximate near  
the wal l  and exact  only a t  the wall .  In  add i t ion ,  t he  mixing length ex- 
press ion  changes with increasing d is tance  from the wall. Therefore, it is 
expedient t o  account f o r  these  e f f e c t s  by incorporat ing t h e  s i n g l e  empirical  
f a c t o r  8 ,  whose value is determined by experiment. 

At the  i n t e r f a c e  between t h e  inner  and ou te r  l aye r s ,  u,  du/dy, and 
must be continuous. Therefore, equating them and performing some a lgebra i c  
manipulations one f i n a l l y  a r r i v e s  a t  the  expression: 

u2 
f o r  incompressible flow. P-Po e where C = = 1 -  - 

1/2 put 

If it is assumed t h a t :  

6 -1/5 
X - = 0037 Rex 

B = 0.66 

K = 0.41 and n ;. 6 

then Equation 158 can be w r i t t e n  as :  

1/2 -0 . 10 
C P ( x  2)  R e x )  = F(x) 0.35 

( 159) 

(160) 

T h i s  equation assumes tu rbu len t  flow throughout and is only appl i -  
cab le  i n  an adverse pressure  gradient .  When the re  i s  a region of favorable  
pressure  grad ien t  or t h e  tu rbu len t  boundary l a y e r  s t a r t s  a t  o t h e r  than a 
leading edge, :he sur face  length coordinate  X is replaced by S = X + X'. 
n e t d i s t a n c e  X represents  t he  v i r t u a l  o r i g i n  of  t h e  tu rbu len t  boundary 
l a y e r  a t  t h e  minimum pressure  po in t  p r i o r  t o  t h e  s t a r t  of the pressure  rise 
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l 
o r  adverse pressure  gradient .  
Equation 145a o r  145b a s  shown i n  Figure 54. 
of  t h e  boundary l a y e r  is included i n  t h e  d e f i n i t i o n  of t h e  separat ion 
parameter. 

The v i r t u a l  o r i g i n  X is ca l cu la t ed  by using 
Hence, t h e  upstream h i s t o r y  

According t o  t h e  ana lys i s ,  Equation 160 w i l l  p r e d i c t  separa t ion  when 
However, f o r  a t y p i c a l  t u rbu len t  F(x) = 0.35 f o r  incompressible flow. 

boundary l a y e r  f l o w ,  F(x) increases  p r i o r  t o  separa t ion  and decreases a f t e r  
separat ion.  Therefore, a f t e r  applying t h i s  method t o  severa l  flows with 
turbulen t  separa t ion ,  S t r a t f o r d  observed t h a t  i f  t h e  maximum value of  F(x) ,  

a. 

b, 

c. is less than 0.35, separa t ion  does not  occur. 

is  g r e a t e r  than 0.4, separa t ion  is predic ted  when F(x) = 0.4, 

l i e s  between 0.35 and 0.4, separa t ion  occurs  a t  t he  maximum value,  

This method works q u i t e  w e l l  f o r  incompressible flows a s  shown i n  
Reference 32. However ,  i n  o rde r  t h a t  the method be use fu l  f o r  solving prob- 
l e m s  of more cu r ren t  i n t e r e s t ,  it must be extended t o  account f o r  compres- 
s i b i l i t y .  The approach taken he re  is one d i c t a t ed  by expediency and physical  
reasoning r a t h e r  than mathematical r i go r ,  Bas ica l ly  the  philosophy of the  
approach is a s  follows. 

The physical  ideas  pos tu la ted  f o r  t he  incompressible case a r e  expected 
t o  apply i n  t h e  compressible case. Therefore, r a t h e r  than quan t i t a t ive ly  
a l t e r  t h e  formulation of  t he  problem t o  account f o r  v a r i a b l e  dens i ty ,  assume 
t h a t  Equation 160 is still v a l i d  but with the  following exceptions.  F i r s t :  

M 2  
P n P n 

C = 1 - ue2 is replaced by C = 1 - e and second, t h e  - - '  
L 

0 
U M d  

0 

c r i t i c a l  range o f  t h e  funct ion F(x) is now d i f f e r e n t  from t h a t  .for incom- 
p r e s s i b l e  flows. 

Now, the  only remaining t a s k  is t o  determine t h e  new c r i t i c a l  range 
f o r  F(x).  
using Equation 160 and t h e  p r  ssure d i s t r i b u t i o n  f o r  a compressible separa ted  

point.  Once t h i s  i s  done f o r  a number of cases ,  one can determine t h e  upper 
l i m i t  f o r  F(x). 
t h i s  t i m e  t he  ca l cu la t ions  a r e  done f o r  compressible flows with adverse 
pressure gradient  where it is known t h a t  t h e  boundary l aye r  does not  separate .  
The g r e a t e s t  d i f f i c u l t y  encountered i n  t ry ing  t o  determine t h e  appropriate  
c r i t i c a l  range f o r  F(x) is the  general  lack of  good,compressible separated 
flow experimental data.  Even though t h i s  d i f f i c u l t y  exists,  it is f e l t  t h a t  
t he re  is enough good data  ava i l ab le  with which to determine t h i s  c r i t i c a l  
range. 

T h i s  is accomplished i n  the  following way. By computing F(x) 

flow, determine t h e  value of  J (x) corresponding t o  the  measured separa t ion  

The lower l i m i t  is determined i n  t h e  same manner, however, 

Figure 55 was derived from t h e  data  of  References 32 through 38. 
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Surface Length 

I a x = x x s : o P  - s X = O  P r  dx 

pra x = -1 

Figure 54. Definition of Lengths in Separation Function. 
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Peak Mach Number M peak 

Figure 55. Separation Functions Vs. Peak Mach Number. 
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It s h o w s  the  c r i t i c a l  range of  F(x) f o r  determining i f  separa t ion  occurs. 
The only region f o r  which no data w e r e  found is t h a t  region between M = 0 
and M = 0.354. This region is bracketed by the  dashed l i n e s ;  however, peak it is  expected t h a t ,  f o r  peak Mach numbers within t h i s  range, r e l i a b l e  engi- 
neer ing es t imates  can be made using t h e  assumed l i n e a r  v a r i a t i o n s  shown. 

10.2.4 Example Cases - Separat ion 

The S t r a t f o r d  method has  been used t o  eva lua te  seve ra l  experimentally 
derived pressure  d i s t r i b u t i o n s  to  determine how w e l l  it predic ted  t h e  mea- 
sured separat ions.  Cases have been found between incompressible flows and 
compressible flows a t  Mach numbers a s  high a s  4.92. Each of these  cases  
w i l l  be discussed. 

10.2.4.1 A i r f o i l  - Incompressible Flow 

The well-known a i r fo i l - type  body t e s t e d  by Schubaur and Klebanoff 
(Reference 34) was se l ec t ed  t o  check out  the program. 
l aye r  program was m n  using t h e  test pressure  d i s t r ibu t ion .  
pressure  poin t ,  the  equivalent  f l a t  p l a t e  length  i s  obtained d i r e c t l y  from 
t h e  boundary l aye r  output.  This then serves  a s  the length  to  t h e  boundary 
l aye r  v i r t u a l  o r i g i n  which is requi red  i n  t h e  separa t ion  ca lcu la t ion .  
Figure 56 shows the  a i r f o i l ,  measured pressure  d i s t r i b u t i o n ,  and t h e  pre- 
d i c t ed  and measured separa t ion  locat ions.  
good. 
on t h e  a i r f o i l .  

F i r s t  t h e  S-B boundary 
A t  the minimum 

The agreement is seen t o  be very 
The AERO Boundary Layer Program did no t  p red ic t  separa t ion  t o  occur 

10.2.4.2 Forward Facing Step  - Subsonic Flow 

The subsonic compressible data of Chapman, Kuehn, and Larson (Ref- 
erence 35) is i d e a l  f o r  determining how w e l l  the S t r a t f o r d  method is ab le  
to pred ic t  separa t ion  because t h e  exact boundary l a y e r  o r i g i n  is known. 
measured pressure  d i s t r i b u t i o n  and predic ted  and measured separa t ion  loca t ions  
are shown i n  Figure 57. 

The 

The agreement is seen t o  be exce l len t .  

10.2.4.3 C i rcu la r  A r c  A i r f o i l  - Subsonic Flow 

The c i r c u l a r  a r c  a i r f o i l  data  of  Reference 36 w e r e  analyzed i n  a manner 
s imi l a r  t o  t h a t  of t h e  Shubaur and Klebanoff a i r f o i l .  That is, t h e  measured 
pressure d i s t r i b u t i o n  w a s  used t o  compute t h e  boundary l a y e r  o r i g i n  a t  t h e  
minimum pressure point .  This equivalent  f l a t  p l a t e  length  is then input  i n t o  
the  STRTF'D (S-B) program. 
stream Mach numbers shown i n  Figure 58. The f a c t  t h a t  t h e  p red ic t ed  separa- 

This  procedure was used for  each of the four  f ree-  

t i o n  loca t ions  a r e  closer t o  t h e  measured ones for  t h e  0.354 and 0.663 f r ee -  
stream Mach numbers is  probably due t o  the  somewhat uncer ta in  i n i t i a l  boundary 
l a y e r  conditions.  Since the  a i r f o i l  is j u s t  a bump on t h e  wind tunnel wall ,  
with suc t ion  and blowing s lots  upstream of  t h e  leading edge, t h e  a c t u a l  bound- 
a r y  l a y e r  h e i g h t i i s  not  known a s  accura te ly  as  is  desired.  This a f f e c t s  t h e  
equivalent  f l a t  p l a t e  length which is ca lcu la t ed  a t  t h e  minimum pressure  
poin t  on t h e  a i r f o i l ,  which, i n  tu rn ,  a f f e c t s  t h e  value o f  t h e  pred ic ted  

129 



1 .o 

.a 

.6 

C 
P .4 

.2 

0 

Length - F e e t  

8 12 16 20 24 28 0 4 

0 

I I I 1 I I 1 

MEASURED PRESSURE 

MEASURED 
SEPARATION 

P O I N T  

DISTRIBUTION 

SEPARATION 

BOUNDARY LAYER 
MEASUREMENTS MADE. 
ON THIS SURFACE \ 

1 2 3 4 5 6 

L e n g t h  - Meters 

I n c o m p r e s s i b l e  F l o w  

'#in 

Max M Pu2 c =  
P 

6 
Re/l  = 2.9 x 10 /m. 
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separa t ion  point .  Even though these  d i f fe rences  occur,  they introduced 
only small inaccuracies.  

10.2.4.4 

Seddon (Reference 37) has  s tud ied  t h e  shock boundary l a y e r  i n t e r -  

F l a t  P l a t e  Shock Boundary Layer In t e rac t ion  - Supersonic Flow 

ac t ion  on a f l a t  p l a t e .  The mechanism f o r  introducing t h e  pressure  gradient  
on t h e  f l a t  p l a t e  is t h e  normal/oblique shock crea ted  by a second p l a t e  lo- 
cated above t h e  f i r s t .  The inc ident  shock wave i n t e r a c t s  with t h e  p l a t e  
boundary l a y e r  and causes a s t eep ,  but  not  discontinuous pressure  rise. 
measured pressure  d i s t r i b u t i o n  and measured separa t ion  po in t  a r e  shown on 
Figure 59 along with t h e  pred ic ted  separa t ion  point .  Again t h e  agreement 
is seen to  be exce l len t .  

The 

10.2.4.5 Wedge - Supersonic Flow 

An experimental s tudy of the  condi t ions necessary t o  promote boundary 
l aye r  separa t ion  i n  t h e  compression corner c rea ted  by t h e  i n t e r s e c t i o n  of 
a wedge and a plane wall  a t  very high Reynolds numbers is reported in Ref- 
erence 38,  In  t h i s  s tudy t h e  wedge/wa11 i n t e r s e c t i o n  was formed by a for-  
ward hinged p l a t e  i n  the  wind tunnel f loor .  
accomplished by simply swinging t h e  hinged p l a t e  through the des i red  angle. 
There w e r e  many condi t ions  simulated i n  t h i s  test, and only th ree  w e r e  ana- 
lyzed w i t h  t h e  S t r a t f o r d  method. Ihese w e r e  selected randomly from a l l  t h e  
ava i l ab le  cases. 
along w i t h  t h e  pred ic ted  and measured separa t ion  p o i n t s  f o r  a free-stream 
Mach number of  2.95. 
wedge angle. 
number of  4.92. 
the method t o  p r e d i c t  tu rbulen t  separa t ions  even f o r  very high Mach numbers 
and Reynolds numbers. 
d i f fe rence  Boundary Layer Program tends t o  p r e d i c t  separa t ion  sooner than 
does the S t r a t f o r d  method. 

Changing the  wedge angle  was 

Figures  60 and 61 show t h e  measured pressure  d i s t r i b u t i o n s  

The only d i f fe rence  between t h e  two f i g u r e s  is t h e  
Figure 62 shows these  same va r i ab le s  a t  a free-stream Mach 

These cases  w e r e  s e l ec t ed  t o  demonstrate t h e  a b i l i t y  of  

One should a l s o  note  i n  Figure 62 t h a t  t h e  f i n i t e  

10.2.5 Data Comparisons - Axisymmetric I n l e t s  

The predic ted  pressure  d i s t r i b u t i o n s  on t h e  NASA A"! i n l e t  No. 8 
(NASA 1-85-100) have been compared with t h e  measured su r face  pressures  re- 
corded on t h e  through-flow nace l l e  during t e s t i n g  i n  the  16-foot tunnel a t  
NASA-Langley. In  Sec t ion  4.3, a t  t h e  beginning of  t h i s  book, the emphasis 
was on t h e  pred ic ted  r e s u l t s  f r o m  t h e  Streamtube Curvature ana lys i s .  
was evident  then t h a t  t h e  boundary l a y e r  displacement e f f e c t s  and separa t ion  
had a s i g n i f i c a n t  in f luence  pear  t h e  leading edge of t h e  i n l e t  l i p .  
t h e  viscous c h a r a c t e r i s t i c s  w i l l  be discussed i n  more d e t a i l .  
f r o m  Sec t ion  4.3 a t  t he  beginning of  t h i s  book w i l l  be repeated with ad- 

It 

Now, 
Two f i g u r e s  

I d i t i o n a l  information noted. 

A t  a free-stream Mach number of  M = 0.8 and a mass flow r a t i o  o f  
0.81, t h e  streamtube curvature  analysis'with viscous e f f e c t s  included pre- 
d ic t s  the sur face  pressures  shown i n  Figure 63. On t h e  i n t e r n a l  sur face  
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of t h e  cowl l i p ,  t h e  comparison with test data is exce l len t  and t h e  e f f e c t s  
of the  boundary l aye r  displacement thickness a r e  not no t iceable  (see Figure 
15). On t h e  ex terna l  surface,  t h e  i n i t i a l  acce le ra t ion  nround t h e  cowl l i p  
is followed by a sharp pressure rise, and inc ip i en t  separa t ion  is predicted. 
Once the  separa t ion  po in t  is predicted,  t he  boundary l a y e r  displacement 
thickness becomes a constant from the re  on ( t h e  viscous ana lys i s  is not ap- 
p l i c a b l e  t o  flow i n  a separation region o r  reattachment). 
curvature ana lys i s  o s c i l l a t e s  i n  t h e  region where t h e  test data ind ica t e  
a separation bubble has been formed. When t h e  flow rea t t aches  the  pred ic ted  
pressures and t h e  measured pressures  agree very w e l l .  Overall ,  t he  measured' 
pressure force  on t h e  cowl outer  sur face  was C, = -0.039 and t h e  predicted 

The streamtube 

pressure force  was C "P Dp I -0.047. 

The predic ted  and measured cowl pressures a r e  shown i n  Figure 64, a t  

= 0.80 i n  t h a t  a separa t ion  bubble is  st i l l  present but it is  extended. 
M 
a? M 
The pressure  comparison is very good on t h e  sur faces  where a t tached  flow 
ex i s t s .  

= 0.85 and a mass r a t i o  of 0.81. The t rends  a r e  very s imi l a r  t o  those 

0 

The NASA No. 8 i n l e t  was analyzed a t  M = 0.9 and a m a s s  flow r a t i o  
The flow reqained a t tached  on 0 of 0.885 with t h e  viscous e f f e c t s  included. 

t h e  ou te r  cowl surface.  On the  in t e rna l  surface,  t h e  flow became supersonic 
l o c a l l y  and then shocked back t o  subsonic. 
measured and predic ted  sur face  pressures is exce l len t  (Figure 65). The over- 
a l l  in tegra ted  pressure  force  on t h e  outer  cowl was measured a s  -0.026 and 
predicted a s  -0.031. Ihe streamtube curvature ana lys i s ,  with viscous effects 
included, matches t h e  test r e s u l t s  more c lose ly  than t h e  inv i sc id  ana lys i s  
alone. 

Again, t h e  comparison between 

10.3 CONCLUSIONS 

The S t r a t f o r d  and Beavers i n t e g r a l  boundary l aye r  ana lys i s  has been 
in tegra ted jwi th  t h e  Streamtube Curvature inv i sc id  flow analysis.  The ana lys i s  
has been l inked so t h a t  t h e  inv i sc id  flow f i e l d  provides t h e  free-stream bound- 
a ry  condit 'ons,  including pressure  grad ien ts ,  f o r  t h e  boundary l aye r  analysis.  

l aye r  displacement thickness effects. 
another f i n i t e  difference ana lys i s  show t h a t  t h e  method is an  accurate and 
r e l i a b l e  p red ic to r  of tu rbulen t  boundary layers.  

The viscou 1 ana lys i s ,  i n  tu rn ,  modifies t h e  nace l l e  geometry f o r  boundary 
The comparisons with test da ta  and 

The S t r a t f o r d  separa t ion  method, modified for compressibil i ty,  has 
been developed t o  p r e d i c t  i nc ip i en t  separation i n  t h e  adverse pressure  gradi- 
e n t  assoc ia ted  with t h e  flow about a nace l l e  and t h a t  assoc ia ted  with embedded 
shocks. Its v a l i d i t y  has  been demonstrated by theory t o  data comparisons for 
two Reynolds numbers. 
very useful and r e l i a b l e  engineering ana lys i s  tool.  

This combined set of flow ana lys i s  methods provides a 

139 



9 n 

0 

* 

9 
0 

0 

El 

3 
r( 

? 
0 
r( 
od 

4, 
c, n 
Y 

E 

0 

d 
cd E e 
c, 
CI 
U 

9 
3 



b 

d-d 
-- 0 - d3 

14 1 



10.4 NOMENCLATURE 

Symbols 

B 

cf 

cP 

6 

6 *  

K 

M 

n 

P 

Y 

r 

I R 
ex 

R 

P 

8 

U 

U 

0 
U 

Description 

Empirical constant  

Skin f r i c t i o n  c o e f f i c i e n t  

C = 1 - M 2  - 
P 

M2 
0 

Boundary l aye r  thickness  

Boundary l aye r  displacement thickness  

Karman constant ;  K = 0.41 

Mach number 

Exponent i n  power law p r o f i l e  

Pressure;  a l s o  a funct ion of Mach 
number (see Equation 146) 

Stream funct ion 

Radius from c e n t e r l i n e  

Reynolds number based on re ference  
ve loc i ty  and l o c a l  x 

Reynolds number based on l o c a l  ve loc i ty  
and l o c a l  x 

Density 

Shear stress 

Boundary l aye r  momentum thickness  

Veloci ty  

Velocity a t  ou te r  edge of boundary l aye r  

Reference ve loc i ty  

X Coordinate along wal l  
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X 

Y 

e 

0 

T 

Equivalent f l a t  p la te  length 

Coordinate normal to wall 

SUBSCRIPTS 

Conditions a t  outer edge 

Denotes free-stream or reference 
conditions 

Stagnation condition 
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